skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-invertible symmetries and LSM-type constraints on a tensor product Hilbert space
We discuss the exact non-invertible Kramers-Wannier symmetry of 1+1d lattice models on a tensor product Hilbert space of qubits. This symmetry is associated with a topological defect and a conserved operator, and the latter can be presented as a matrix product operator. Importantly, unlike its continuum counterpart, the symmetry algebra involves lattice translations. Consequently, it is not described by a fusion category. In the presence of this defect, the symmetry algebra involving parity/time-reversal is realized projectively, which is reminiscent of an anomaly. Different Hamiltonians with the same lattice non-invertible symmetry can flow in their continuum limits to infinitely many different fusion categories (with different Frobenius-Schur indicators), including, as a special case, the Ising CFT. The non-invertible symmetry leads to a constraint similar to that of Lieb-Schultz-Mattis, implying that the system cannot have a unique gapped ground state. It is either in a gapless phase or in a gapped phase with three (or a multiple of three) ground states, associated with the spontaneous breaking of the lattice non-invertible symmetry.  more » « less
Award ID(s):
2449936
PAR ID:
10595616
Author(s) / Creator(s):
; ;
Publisher / Repository:
SciPost
Date Published:
Journal Name:
SciPost Physics
Volume:
16
Issue:
6
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explore exact generalized symmetries in the standard 2+1d lattice\mathbb{Z}_2 2 gauge theory coupled to the Ising model, and compare them with their continuum field theory counterparts. One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases. The non-invertible algebra involves a lattice condensation operator, which creates a toric code ground state from a product state. Another model has a mixed anomaly between a 1-form symmetry and an ordinary symmetry. This anomaly enforces a nontrivial transition in the phase diagram, consistent with the “Higgs=SPT” proposal. Finally, we discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation. 
    more » « less
  2. We investigate the interplay of generalized global symmetries in 2+1 dimensions by introducing a lattice model that couples a ZN clock model to a ZN gauge theory via a topological interaction. This coupling binds the charges of one symmetry to the disorder operators of the other, and when these composite objects condense, they give rise to emergent generalized symmetries with mixed ’t Hooft anomalies. These anomalies result in phases with ordinary symmetry breaking, topological order, and symmetry-protected topological (SPT) order, where the different types of order are not independent but intimately related. We further explore the gapped boundary states of these exotic phases and develop theories for phase transitions between them. Additionally, we extend our lattice model to incorporate a non-invertible global symmetry, which can be spontaneously broken, leading to domain walls with non-trivial fusion rules. 
    more » « less
  3. In this paper, we present a homotopical framework for studying invertible gapped phases of matter from the point of view of infinite spin lattice systems, using the framework of algebraic quantum mechanics. We define the notion of quantum state types. These are certain lax-monoidal functors from the category of finite-dimensional Hilbert spaces to the category of topological spaces. The universal example takes a finite-dimensional Hilbert space [Formula: see text] to the pure state space of the quasi-local algebra of the quantum spin system with Hilbert space [Formula: see text] at each site of a specified lattice. The lax-monoidal structure encodes the tensor product of states, which corresponds to stacking for quantum systems. We then explain how to formally extract parametrized phases of matter from quantum state types, and how they naturally give rise to [Formula: see text]-spaces for an operad we call the “multiplicative” linear isometry operad. We define the notion of invertible quantum state types and explain how the passage to phases for these is related to group completion. We also explain how invertible quantum state types give rise to loop-spectra. Our motivation is to provide a framework for constructing Kitaev’s loop-spectrum of bosonic invertible gapped phases of matter. Finally, as a first step toward understanding the homotopy types of the loop-spectra associated to invertible quantum state types, we prove that the pure state space of any UHF algebra is simply connected. 
    more » « less
  4. Abstract A recent development in our understanding of the theory of quantum fields is the fact that familiar gauge theories in spacetime dimensions greater than two can have non-invertible symmetries generated by topological defects. The hallmark of these non-invertible symmetries is that the fusion rule deviates from the usual group-like structure, and in particular the fusion coefficients take values in topological field theories (TFTs) rather than in mere numbers. In this paper we begin an exploration of the associativity structure of non-invertible symmetries in higher dimensions. The first layer of associativity is captured by F-symbols, which we find to assume values in TFTs that have one dimension lower than that of the defect. We undertake an explicit analysis of the F-symbols for the non-invertible chiral symmetry that is preserved by the massless QED and explore their physical implications. In particular, we show the F-symbol TFTs can be detected by probing the correlators of topological defects with ’t Hooft lines. Furthermore, we derive the Ward–Takahashi identity that arises from the chiral symmetry on a large class of four-dimensional manifolds with non-trivial topologies directly from the topological data of the symmetry defects, without referring to a Lagrangian formulation of the theory. 
    more » « less
  5. We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders. We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups of invertible0 0 -form symmetries. These symmetries can arise as global symmetries in quantum spin liquids, given by the quotient of the projective symmetry group by a non-normal subgroup as invariant gauge group. We point out that such coset non-invertible symmetries in topological orders can exhibit symmetry fractionalization: each anyon can carry a “fractional charge” under the coset non-invertible symmetry given by a gauge invariant superposition of fractional quantum numbers. We present various examples using field theories and quantum double lattice models, such as fractional quantum Hall systems with charge conjugation symmetry gauged and finite group gauge theory from gauging a non-normal subgroup. They include symmetry enrichedS_3 S 3 andO(2) O ( 2 ) gauge theories. We show that such systems have a fractionalized continuous non-invertible coset symmetry and a well-defined electric Hall conductance. The coset symmetry enforces a gapless edge state if the boundary preserves the continuous non-invertible symmetry. We propose a general approach for constructing coset symmetry defects using a “sandwich” construction: non-invertible symmetry defects can generally be constructed from an invertible defect sandwiched by condensation defects. The anomaly free condition for finite coset symmetry is also identified. 
    more » « less