skip to main content


Title: Shallow coral reef free ocean carbon enrichment: Novel in situ flumes to manipulate pCO 2 on shallow tropical coral reef communities
Abstract

Given the severe implications of climate change and ocean acidification (OA) for marine ecosystems, there is an urgent need to quantify ecosystem function in present‐day conditions to determine the impacts of future changes in environmental conditions. For tropical coral reefs that are acutely threatened by these effects, the metabolism of benthic communities provides several metrics suitable for this purpose, but the application of infrastructure to manipulate conditions and measure community responses is not fully realized. To date, most studies of the effects of OA on coral reefs have been conducted ex situ, and while greater ecological relevance can be achieved through free ocean carbon enrichment (FOCE) experiments on undisturbed areas of reef, such approaches have been deterred by technical challenges (e.g., spatial scale and duration, stable maintenance of conditions). In this study, we describe novel experimental infrastructure called shallow coral reef (SCoRe) FOCE to overcome these challenges and present data from a proof of concept application in Mo'orea, French Polynesia. Our objectives were to (1) implement an autonomous system that could be deployed kilometers from shore, (2) regulate the chemical (pCO2) and physical properties of seawater over undisturbed, shallow (∼2–5‐m depth) coral reef over multiple weeks, and (3) measure the metabolic response of the coral community to the treatment conditions. We describe the design, function, and application of the SCoRe FOCE, and present data demonstrating its efficacy. This infrastructure has great potential for advancing ecologically relevant studies of the effects of changing environmental conditions on coral reefs.

 
more » « less
Award ID(s):
1637396
NSF-PAR ID:
10458783
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
18
Issue:
3
ISSN:
1541-5856
Page Range / eLocation ID:
p. 116-128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis. 
    more » « less
  2. Abstract

    The Anthropocene climate has largely been defined by a rapid increase in atmospheric CO2,causing global climate change (warming) and ocean acidification (OA, a reduction in oceanic pH). OA is of particular concern for coral reefs, as the associated reduction in carbonate ion availability impairs biogenic calcification and promotes dissolution of carbonate substrata. While these trends ultimately affect ecosystem calcification, scaling experimental analyses of the response of organisms to OA to consider the response of ecosystems to OA has proved difficult. The benchmark of ecosystem-level experiments to study the effects of OA is provided through Free Ocean CO2Enrichment (FOCE), which we use in the present analyses for a 21-d experiment on the back reef of Mo’orea, French Polynesia. Two natural coral reef communities were incubatedin situ, with one exposed to ambient pCO2(393 µatm), and one to high pCO2(949 µatm). Our results show a decrease in 24-h net community calcification (NCC) under high pCO2, and a reduction in nighttime NCC that attenuated and eventually reversed over 21-d. This effect was not observed in daytime NCC, and it occurred without any effect of high pCO2on net community production (NCP). These results contribute to previous studies on ecosystem-level responses of coral reefs to the OA conditions projected for the end of the century, and they highlight potential attenuation of high pCO2effects on nighttime net community calcification.

     
    more » « less
  3. Abstract Background

    Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH — an important global coral reef stressor — can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome.

    Results

    We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation.

    Conclusions

    We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem change.

     
    more » « less
  4. Abstract

    There is growing concern about the effects of ocean acidification (OA) on coral reefs, with many studies indicating decreasing calcium carbonate production and reef growth. However, to accurately predict how coral reefs will respond to OA, it is necessary to characterize natural carbonate chemistry conditions, including the spatiotemporal mean and variability and the physical and biogeochemical drivers across different environments. In this study, spatial and temporal physiochemical variability was characterized at two contrasting reef locations in Bocas del Toro, Panama, that differed in their benthic community composition, reef morphology, and exposure to open ocean conditions, using a combination of approaches including autonomous sensors and spatial surveys during November 2015. Mean and diurnal temporal variability in both physical and chemical seawater parameters were similar between sites and sampling depths, but with occasional differences in extreme values. The magnitude of spatial variability was different between the two sites, which reflected the cumulative effect from terrestrial runoff and benthic metabolism. Based on graphical vector analysis of TA–DIC data, reef metabolism was dominated by organic over inorganic carbon cycling at both sites, with net heterotrophy and net calcium carbonate dissolution dominating the majority of observations. The results also highlight the potentially strong influence of terrestrial freshwater runoff on surface seawater conditions, and the challenges associated with evaluating and characterizing this influence on benthic habitats. The Bocas del Toro reef is a unique system that deserves attention to better understand the mechanisms that allow corals and coral reefs to persist under increasingly challenging environmental conditions.

     
    more » « less
  5. Abstract

    The implications of ocean acidification are acute for calcifying organisms, notably tropical reef corals, for which accretion generally is depressed and dissolution enhanced at reduced seawater pH. We describe year‐long experiments in which back reef and fore reef (17‐m depth) communities from Moorea, French Polynesia, were incubated outdoors under pCO2regimes reflecting endpoints of representative concentration pathways (RCPs) expected by the end the century. Incubations were completed in three to four flumes (5.0 × 0.3 m, 500 L) in which seawater was refreshed and circulated at 0.1 m s−1, and the response of the communities was evaluated monthly by measurements of net community calcification (NCC) and net community productivity (NCP). For both communities, NCC (but not NCP) was affected by treatments and time, with NCC declining with increasing pCO2, and for the fore reef, becoming negative (i.e., dissolution was occurring) at the highest pCO2(1067–1433μatm, RCP8.5). There was scant evidence of community adjustment to reduce the negative effects of ocean acidification, and inhibition of NCC intensified in the back reef as the abundance of massivePoritesspp. declined. These results highlight the risks of dissolution under ocean acidification for coral reefs and suggest these effects will be most acute in fore reef habitats. Without signs of amelioration of the negative effects of ocean acidification during year‐long experiments, it is reasonable to expect that the future of coral reefs in acidic seas can be predicted from their current known susceptibility to ocean acidification.

     
    more » « less