skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ARC: DVFS-aware asymmetric-retention STT-RAM caches for energy-efficient multicore processors
Relaxed retention (or volatile) spin-transfer torque RAM (STT-RAM) has been widely studied as a way to reduce STT-RAM's write energy and latency overheads. Given a relaxed retention time STT-RAM level one (L1) cache, we analyze the impacts of dynamic voltage and frequency scaling (DVFS)---a common optimization in modern processors---on STT-RAM L1 cache design. Our analysis reveals that, apart from the fact that different applications may require different retention times, the clock frequency, which is typically ignored in most STT-RAM studies, may also significantly impact applications' retention time needs. Based on our findings, we propose an asymmetric-retention core (ARC) design for multicore architectures. ARC features retention time heterogeneity to specialize STT-RAM retention times to applications' needs. We also propose a runtime prediction model to determine the best core on which to run an application, based on the applications' characteristics, their retention time requirements, and available DVFS settings. Results reveal that the proposed approach can reduce the average cache energy by 20.19% and overall processor energy by 7.66%, compared to a homogeneous STT-RAM cache design.  more » « less
Award ID(s):
1844952
PAR ID:
10156119
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the International Symposium on Memory Systems (MEMSYS), 2019
Page Range / eLocation ID:
439 to 450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prior studies have shown that the retention time of the non-volatile spin-transfer torque RAM (STT-RAM) can be relaxed in order to reduce STT-RAM's write energy and latency. However, since different applications may require different retention times, STT-RAM retention times must be critically explored to satisfy various applications' needs. This process can be challenging due to exploration overhead, and exacerbated by the fact that STT-RAM caches are emerging and are not readily available for design time exploration. This paper explores using known and easily obtainable statistics (e.g., SRAM statistics) to predict the appropriate STT-RAM retention times, in order to minimize exploration overhead. We propose an STT-RAM Cache Retention Time (SCART) model, which utilizes machine learning to enable design time or runtime prediction of right-provisioned STT-RAM retention times for latency or energy optimization. Experimental results show that, on average, SCART can reduce the latency and energy by 20.34% and 29.12%, respectively, compared to a homogeneous retention time while reducing the exploration overheads by 52.58% compared to prior work. 
    more » « less
  2. Dynamic voltage and frequency scaling (DVFS) is a well-known technique to reduce the power and/or energy consumption of various applications. While most processors provide chip-level DVFS, where the frequency and voltage of the cores in a chip can only be changed all together; core-level DVFS, where each core can be controlled independently, requires core-level voltage regulators in hardware and only is supported in production in Haswell generation among Intel processors. The finer grained control that per-core DVFS provides can lead to higher energy efficiency compared to chip-level DVFS especially for the unsynchronized, unstructured parallel applications when carefully applied. Ability to do per-core DVFS opens up new doors for different optimizations within runtime systems. We implement an intelligent energy efficient runtime module which uses a fine-grained function level per-core DVFS approach. Our module finds the energy-optimal frequency for each phase/function/kernel of the application over the first few iterations and applies the optimal frequency for each function. We test our implementation on Haswell processors and show that our algorithm enables 4% to 35% energy reduction over chip-level DVFS with as much as performance. 
    more » « less
  3. Magneto-Electric FET ( MEFET ) is a recently developed post-CMOS FET, which offers intriguing characteristics for high-speed and low-power design in both logic and memory applications. In this article, we present MeF-RAM , a non-volatile cache memory design based on 2-Transistor-1-MEFET ( 2T1M ) memory bit-cell with separate read and write paths. We show that with proper co-design across MEFET device, memory cell circuit, and array architecture, MeF-RAM is a promising candidate for fast non-volatile memory ( NVM ). To evaluate its cache performance in the memory system, we, for the first time, build a device-to-architecture cross-layer evaluation framework to quantitatively analyze and benchmark the MeF-RAM design with other memory technologies, including both volatile memory (i.e., SRAM, eDRAM) and other popular non-volatile emerging memory (i.e., ReRAM, STT-MRAM, and SOT-MRAM). The experiment results for the PARSEC benchmark suite indicate that, as an L2 cache memory, MeF-RAM reduces Energy Area Latency ( EAT ) product on average by ~98% and ~70% compared with typical 6T-SRAM and 2T1R SOT-MRAM counterparts, respectively. 
    more » « less
  4. With the increase in GPU register file (RF) size, its power consumption has also increased. Since RF exists at the highest level in cache hierarchy, designing it with memories with high write latency/energy (e.g., spin transfer torque RAM) can lead to large energy loss. In this paper, we present an spin orbit torque RAM (SOT-RAM) based RF design which provides higher energy efficiency than SRAM and STT-RAM RFs while maintaining performance same as that of SRAM RF. To further improve energy efficiency of SOT-RAM based RF, we propose avoiding redundant bit-writes to RF. Compared to SRAM RF, SOT-RAM RF saves 18.6% energy and by using our technique for avoiding redundant writes, the energy saving can be increased to 44.3%, without harming performance. 
    more » « less
  5. The design space for energy-efficient Network-on-Chips (NoCs) has expanded significantly comprising a number of techniques. The simultaneous application of these techniques to yield maximum energy efficiency requires the monitoring of a large number of system parameters which often results in substantial engineering efforts and complicated control policies. This motivates us to explore the use of reinforcement learning (RL) approach that automatically learns an optimal control policy to improve NoC energy efficiency. First, we deploy power-gating (PG) and dynamic voltage and frequency scaling (DVFS) to simultaneously reduce both static and dynamic power. Second, we use RL to automatically explore the dynamic interactions among PG, DVFS, and system parameters, learn the critical system parameters contained in the router and cache, and eventually evolve optimal per-router control policies that significantly improve energy efficiency. Moreover, we introduce an artificial neural network (ANN) to efficiently implement the large state-action table required by RL. Simulation results using PARSEC benchmark show that the proposed RL approach improves power consumption by 26%, while improving system performance by 7%, as compared to a combined PG and DVFS design without RL. Additionally, the ANN design yields 67% area reduction, as compared to a conventional RL implementation. 
    more » « less