Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browser
more »
« less
Case Study: Disclosure of Indirect Device Fingerprinting in Privacy Policies
Recent developments in online tracking make it harder for individuals to detect and block trackers. Some sites have deployed indirect tracking methods, which attempt to uniquely identify a device by asking the browser to perform a seemingly-unrelated task. One type of indirect tracking, Canvas fingerprinting, causes the browser to render a graphic recording rendering statistics as a unique identifier. In this work, we observe how indirect device fingerprinting methods are disclosed in privacy policies, and consider whether the disclosures are sufficient to enable website visitors to block the tracking methods. We compare these disclosures to the disclosure of direct fingerprinting methods on the same websites. Our case study analyzes one indirect fingerprinting technique, Canvas fingerprinting. We use an existing automated detector of this fingerprinting technique to conservatively detect its use on Alexa Top 500 websites that cater to United States consumers, and we examine the privacy policies of the resulting 28 websites. Disclosures of indirect fingerprinting vary in specificity. None described the specific methods with enough granularity to know the website used Canvas fingerprinting. Conversely, many sites did provide enough detail about usage of direct fingerprinting methods to allow a website visitor to reliably detect and block those techniques. We conclude that indirect fingerprinting methods are often difficult to detect and are not identified with specificity in privacy policies. This makes indirect fingerprinting more difficult to block, and therefore risks disturbing the tentative armistice between individuals and websites currently in place for direct fingerprinting. This paper illustrates differences in fingerprinting approaches, and explains why technologists, technology lawyers, and policymakers need to appreciate the challenges of indirect fingerprinting.
more »
« less
- Award ID(s):
- 1915763
- PAR ID:
- 10156172
- Date Published:
- Journal Name:
- ArXivorg
- Volume:
- 1908
- Issue:
- 07965
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Over half of all visits to websites now take place in a mobile browser, yet the majority of web privacy studies take the vantage point of desktop browsers, use emulated mobile browsers, or focus on just a single mobile browser instead. In this paper, we present a comprehensive web-tracking measurement study on mobile browsers and privacy-focused mobile browsers. Our study leverages a new web measurement infrastructure, OmniCrawl, which we develop to drive browsers on desktop computers and smartphones located on two continents. We capture web tracking measurements using 42 different non-emulated browsers simultaneously. We find that the third-party advertising and tracking ecosystem of mobile browsers is more similar to that of desktop browsers than previous findings suggested. We study privacy-focused browsers and find their protections differ significantly and in general are less for lower-ranked sites. Our findings also show that common methodological choices made by web measurement studies, such as the use of emulated mobile browsers and Selenium, can lead to website behavior that deviates from what actual users experience.more » « less
-
Website privacy policies sometimes provide users the option to opt-out of certain collections and uses of their personal data. Unfortunately, many privacy policies bury these instructions deep in their text, and few web users have the time or skill necessary to discover them. We describe a method for the automated detection of opt-out choices in privacy policy text and their presentation to users through a web browser extension. We describe the creation of two corpora of opt-out choices, which enable the training of classifiers to identify opt-outs in privacy policies. Our overall approach for extracting and classifying opt-out choices combines heuristics to identify commonly found opt-out hyperlinks with supervised machine learning to automatically identify less conspicuous instances. Our approach achieves a precision of 0.93 and a recall of 0.9. We introduce Opt-Out Easy, a web browser extension designed to present available opt-out choices to users as they browse the web. We evaluate the usability of our browser extension with a user study. We also present results of a large-scale analysis of opt-outs found in the text of thousands of the most popular websites.more » « less
-
Web forms are one of the primary ways to collect personal information online, yet they are relatively under-studied. Unlike web tracking, data collection through web forms is explicit and contextualized. Users (i) are asked to input specific personal information types, and (ii) know the specific context (i.e., on which website and for what purpose). For web forms to be trusted by users, they must meet the common sense standards of appropriate data collection practices within a particular context (i.e., privacy norms). In this paper, we extract the privacy norms embedded within web forms through a measurement study. First, we build a specialized crawler to discover web forms on websites. We run it on 11,500 popular websites, and we create a dataset of 293K web forms. Second, to process data of this scale, we develop a cost-efficient way to annotate web forms with form types and personal information types, using text classifiers trained with assistance of large language models (LLMs). Third, by analyzing the annotated dataset, we reveal common patterns of data collection practices. We find that (i) these patterns are explained by functional necessities and legal obligations, thus reflecting privacy norms, and that (ii) deviations from the observed norms often signal unnecessary data collection. In addition, we analyze the privacy policies that accompany web forms. We show that, despite their wide adoption and use, there is a disconnect between privacy policy disclosures and the observed privacy norms.more » « less
-
Terms of service documents are a common feature of organizations' websites. Although there is no blanket requirement for organizations to provide these documents, their provision often serves essential legal purposes. Users of a website are expected to agree with the contents of a terms of service document, but users tend to ignore these documents as they are often lengthy and difficult to comprehend. As a step towards understanding the landscape of these documents at a large scale, we present a first-of-its-kind terms of service corpus containing 247,212 English language terms of service documents obtained from company websites sampled from Free Company Dataset. We examine the URLs and contents of the documents and find that some websites that purport to post terms of service actually do not provide them. We analyze reasons for unavailability and determine the overall availability of terms of service in a given set of website domains. We also identify that some websites provide an agreement that combines terms of service with a privacy policy, which is often an obligatory separate document. Using topic modeling, we analyze the themes in these combined documents by comparing them with themes found in separate terms of service and privacy policies. Results suggest that such single-page agreements miss some of the most prevalent topics available in typical privacy policies and terms of service documents and that many disproportionately cover privacy policy topics as compared to terms of service topics.more » « less
An official website of the United States government

