skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of the Second Year of a REU Program on Cyber-physical System Cybersecurity
The North Dakota State University operated a National Science Foundation (NSF) sponsored research experience for undergraduates (REU) program during the summers of 2018 and 2019. This paper presents the results of this program for the second year of operations (in 2019) and compares them to the results from the prior year. It provides an overview of the program and the changes made between the two years. It also discusses the different research topics that students worked on during both years of program participation. The benefits that students sought and attained are also reviewed.  more » « less
Award ID(s):
1757659
PAR ID:
10156204
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the ASEE 2020 Annual Conference
Volume:
2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports on the culmination of an NSF Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) awarded to a two-year college located in a metro area with high rates of concentrated poverty and low levels of educational attainment. This two-year college is a minority-serving institution with curriculum to prepare students majoring in engineering to transfer and complete a baccalaureate degree at a four-year university. The Engineering Scholars Program (ESP) was established in fall 2019 to award students majoring in engineering annual scholarships of up to $6000, depending on financial need. In addition to supporting students through scholarships, the program engages scholars in professional development activities inclusive of academic seminars, extracurricular events, and undergraduate research opportunities in collaboration with the local four-year university. The program also established a mentorship structure with faculty mentors, student peer mentors, and academic advising. In addition to supporting scholars at the two-year college, the ESP provides support for a portion of cohorts that have transferred to the local four-year university and remained connected to the program. To date, the ESP has awarded a total of 131 semester long scholarships; 16 in year one (2019-2020), 28 in year two (2020-2021), 35 in year three (2021-2022), including six transfers, 38 in year four (2022-2023), including eight transfers, and 28 in year five (2023-2024), including 10 transfers. In year three, the ESP was awarded supplemental funding to support a larger portion of students and transfer cohorts; this helped reduce the financial burdens resulting from exacerbated financial needs due to the COVID-19 pandemic during years two and three of this project. This paper details the progress made towards the achievement of the program goals of creating a welcoming STEM climate at the two-year college, increasing the participation and persistence in engineering among economically disadvantaged students, and establishing transfer support to the local four-year university. Program evaluation findings have identified several opportunities for sustaining scholar transfer support outside of the financial support provided in the form of scholarships. These opportunities fell into two major themes: (1) peer-led transfer support inclusive of connecting transferred students and students preparing for transfer with emphasis on navigating different university structures, and (2) collaboration across engineering disciplines to develop and offer interdisciplinary undergraduate research and/or collaborative work on other projects. Furthermore, research findings from interviews with scholars provided additional context for taking action on program outcomes while also enhancing the understanding of how participation in a collaborative cohort experience can contribute to students’ membership within the STEM community and the construction of their own STEM identity. Although formal financial support sunsets during the final year of the ESP, program and research findings have identified programmatic elements that provide key support for students and can be sustained into the future. This paper reports on the program strategy for meeting the future needs of scholars at both the two-year college and the four-year transfer university. 
    more » « less
  2. This Complete Evidence-Based Paper presents research about a layered peer mentorship program for undergraduate engineering students at a public urban research university and ways that students have made meaning from their mentorship experiences. This mentorship program began in Fall 2019 and has grown to include the following layers: (a) first-year students who receive mentorship, (b) sophomore- and junior-level students who serve as mentors (all of whom received mentorship during their first year), (c) junior- and senior-level students who serve as lead mentors who design the program for that academic year (including content, group meetings, service projects, meeting schedules, etc.), (d) a graduate student who mentors and supervises the lead mentors, and (e) a faculty member who oversees the overall program, provides general guidance, and advises all the students. We will describe ways in which the participating students have made meaning of their experience in the program, highlighting three key areas: (1) the web of relationships formed, which cohere into a community; (2) students’ transitions from receiving mentorship as first-year students to mentoring others in their sophomore and junior years; and (3) the feedback and iteration process by which the program has continuously developed, which forefronts student voice and agency. The paper will provide specific examples in each of the three key areas described, with a special focus on students’ own descriptions of the meaning they have made through their participation in the mentorship program. Recommendations will also be shared for those interested in implementing similar programs on their campuses. 
    more » « less
  3. This paper reports on activities and outcomes from years three and four of a 5-year NSF Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) award at a two-year college. The college is a minority-serving institution located in a metro area with high rates of concentrated poverty and low levels of educational attainment. Through the program scholarships are awarded to cohorts of students majoring in engineering selected each fall semester from applications collected the previous spring. After completing transfer preparation curriculum at the two-year college, select scholars who transfer to the local four-year university may remain in the program for continued support. Students in each cohort, including those who remain in the program after transfer, are supported with annual scholarships of up to $6000, depending on financial need. In addition to scholarship money, students participate in a variety of program activities throughout the school year in the form of academic seminars, extracurricular events, professional development, faculty mentoring, peer mentoring, academic advising, and undergraduate research opportunities. Noteworthy elements of the program in years three and four include 1) the selection and award of the fourth and final cohort entering the program, 2) a transition of leadership to a new principal investigator for the program at the two-college, and 3) the increase in number of students who have continued with the program after transfer to the local four-year university. During year three of this five-year program, the first cohort of students successfully transferred and completed a full year at their new four-year university. Supplemental funding has enabled the program to expand support for additional students at both the two-year college and the four-year university after transfer. This has reduced financial burdens and addressed the unanticipated challenge that some students would need more than two years to transfer due to delays brought on by the COVID-19 pandemic. Program evaluation findings identified requests from students that would enhance the program approach and further prepare for transfer. These included establishing a transferred student panel for students preparing to transfer, seminars on maintaining a positive work/life balance and differences in university systems, further support for peer mentorship for both mentors and mentees, and additional opportunities for collaboration across engineering disciplines. Research findings from interviews conducted with transferred students identified several opportunities to further enhance the transfer preparation approach and support structures needed for success at their new institution. These include intentional preparation for establishing membership in a new community, identification of systems and processes for support at their new institution, including how these may differ from their previous institution, and opportunity to serve as a mentor and engage with students preparing to transfer. In addition, in year 4 program leadership transitioned due to a new role at new university and more students support requests of leadership at both the two-year college and the four-year transfer university than originally anticipated. This has resulted in reflection on the program administration and the people and structures that sustain it. This poster will include summaries of scholar activities, transition in and impact on program leadership, program evaluation results, and research findings from the first cohort of students that have transferred and completed a full year at their new institution. 
    more » « less
  4. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less
  5. This research paper examines retaining traditionally underrepresented minorities (URM) in STEM fields. The retention of URM students in STEM fields is a current area of focus for engineering education research. After an extensive literature review and examination of best practices in retaining the targeted group, a cohort-based, professional development program with a summer bridge component was developed at a large land grant institution in the Mid-Atlantic region. One programmatic goal was to increase retention of underrepresented students in the engineering college which, ultimately, is expected to increase diversity in the engineering workforce. The program has a strong focus on cohort building, teamwork, mentorship, and developing an engineering identity. Students participate in a week-long summer bridge component prior to the start of their first semester. During their first year, students take a class as a cohort each semester, participate in an industrial site visit, and interact with faculty mentors. Since 2016 the program has been funded by a National Science Foundation S-STEM grant, which provides scholarships to eligible program participants. Scholarships start at $4,500 during year one, and are renewable for up to five years, with an incremental increase of $1000 annually for years one through four. Even with the professional development program providing support and scholarships alleviating the financial burden of higher education, students are still leaving engineering. The 2016-2017 cohort consisted of five scholarship recipients, of which three remained in engineering as of fall 2018, the beginning of their third year. The 2017-2018 cohort consisted of seven scholarship recipients, of which five remained in engineering as of fall 2018, their second year. While the numbers of this scholarship group are small, their retention rate is alarmingly below the engineering college retention rate. Why? This paper presents the results of additional investigations of the overall program cohorts (not only the scholarship recipients) and their non-program peers with the aim of determining predictors of retention in the targeted demographic. Student responses to three survey instruments: GRIT, MSLQ, and LAESE were analyzed to determine why students were leaving engineering, even though the program they participated in was strongly rooted in retention based literature. Student responses on program exit surveys were also analyzed to determine non-programmatic elements that may cause students to leave engineering. Results of this research is presented along with “lessons learned” and suggested actions to increase retention among the targeted population. 
    more » « less