skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: YANG–BAXTER FIELD FOR SPIN HALL–LITTLEWOOD SYMMETRIC FUNCTIONS
Employing bijectivization of summation identities, we introduce local stochastic moves based on the Yang–Baxter equation for $$U_{q}(\widehat{\mathfrak{sl}_{2}})$$ . Combining these moves leads to a new object which we call the spin Hall–Littlewood Yang–Baxter field—a probability distribution on two-dimensional arrays of particle configurations on the discrete line. We identify joint distributions along down-right paths in the Yang–Baxter field with spin Hall–Littlewood processes, a generalization of Schur processes. We consider various degenerations of the Yang–Baxter field leading to new dynamic versions of the stochastic six-vertex model and of the Asymmetric Simple Exclusion Process.  more » « less
Award ID(s):
1664617
PAR ID:
10156353
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
7
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    The quantum alcove model associated to a dominant weight plays an important role in many branches of mathematics, such as combinatorial representation theory, the theory of Macdonald polynomials, and Schubert calculus. For a dominant weight, it is proved by Lenart–Lubovsky that the quantum alcove model does not depend on the choice of a reduced alcove path, which is a shortest path of alcoves from the fundamental one to its translation by the given dominant weight. This is established through quantum Yang–Baxter moves, which biject the objects of the models associated to two such alcove paths, and can be viewed as a generalization of jeu de taquin slides to arbitrary root systems. The purpose of this paper is to give a generalization of quantum Yang–Baxter moves to the quantum alcove model corresponding to an arbitrary weight, which was used to express a general Chevalley formula for the equivariantK-group of semi-infinite flag manifolds. The generalized quantum Yang–Baxter moves give rise to a “sijection” (bijection between signed sets), and are shown to preserve certain important statistics, including weights and heights. As an application, we prove that the generating function of these statistics does not depend on the choice of a reduced alcove path. Also, we obtain an identity for the graded characters of Demazure submodules of level-zero extremal weight modules over a quantum affine algebra, which can be thought of as a representation-theoretic analogue of the mentioned Chevalley formula. 
    more » « less
  2. Recently, there has been much progress in understanding stationary measures for colored (also called multi-species or multi-type) interacting particle systems, motivated by asymptotic phenomena and rich underlying algebraic and combinatorial structures (such as nonsymmetric Macdonald polynomials). In this paper, we present a unified approach to constructing stationary measures for most of the known colored particle systems on the ring and the line, including (1) the Asymmetric Simple Exclusion Process (multispecies ASEP, or mASEP); (2) the q-deformed Totally Asymmetric Zero Range Process (TAZRP) also known as the q-Boson particle system; (3) the q-deformed Pushing Totally Asymmetric Simple Exclusion Process (q-PushTASEP). Our method is based on integrable stochastic vertex models and the Yang-Baxter equation. We express the stationary measures as partition functions of new "queue vertex models" on the cylinder. The stationarity property is a direct consequence of the Yang-Baxter equation. For the mASEP on the ring, a particular case of our vertex model is equivalent to the multiline queues of Martin (arXiv:1810.10650). For the colored q-Boson process and the q-PushTASEP on the ring, we recover and generalize known stationary measures constructed using multiline queues or other methods by Ayyer-Mandelshtam-Martin (arXiv:2011.06117, arXiv:2209.09859), and Bukh-Cox (arXiv:1912.03510). Our proofs of stationarity use the Yang-Baxter equation and bypass the Matrix Product Ansatz used for the mASEP by Prolhac-Evans-Mallick (arXiv:0812.3293). On the line and in a quadrant, we use the Yang-Baxter equation to establish a general colored Burke's theorem, which implies that suitable specializations of our queue vertex models produce stationary measures for particle systems on the line. We also compute the colored particle currents in stationarity. 
    more » « less
  3. Abstract Many integrable stochastic particle systems in one space dimension (such as TASEP—Totally Asymmetric Simple Exclusion Process—and itsq-deformation, theq-TASEP) remain integrable if we equip each particle with its own speed parameter. In this work, we present intertwining relations between Markov transition operators of particle systems which differ by a permutation of the speed parameters. These relations generalize our previous works (Petrov and Saenz in Probab Theory Relat Fields 182:481–530, 2022), (Petrov in SIGMA 17(021):34, 2021), but here we employ a novel approach based on the Yang-Baxter equation for the higher spin stochastic six vertex model. Our intertwiners are Markov transition operators, which leads to interesting probabilistic consequences. First, we obtain a new Lax-type differential equation for the Markov transition semigroups of homogeneous, continuous-time versions of our particle systems. Our Lax equation encodes the time evolution of multipoint observables of theq-TASEP and TASEP in a unified way, which may be of interest for the asymptotic analysis of multipoint observables of these systems. Second, we show that our intertwining relations lead to couplings between probability measures on trajectories of particle systems which differ by a permutation of the speed parameters. The conditional distribution for such a coupling is realized as a “rewriting history” random walk which randomly resamples the trajectory of a particle in a chamber determined by the trajectories of the neighboring particles. As a byproduct, we construct a new coupling for standard Poisson processes on the positive real half-line with different rates. 
    more » « less
  4. A braided Frobenius algebra is a Frobenius algebra with a Yang–Baxter operator that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation [Formula: see text], that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a Yang–Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between Yang–Baxter operators and Frobenius operations. 
    more » « less
  5. We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions $v,w$$ -- {\it biaxial double} $$(\beta,q)$$-{\it Grothendieck polynomials} -- which specialize at $$q=0$ and $v=1$ to double $$\beta$$-Grothendieck polynomials from torus-equivariant connective K-theory. Initially defined recursively via divided difference operators, our main result is that these new polynomials arise as partition functions of solvable lattice models. Moreover, the associated quantum group of the solvable model for polynomials in $$n$$ pairs of variables is a Drinfeld twist of the $$U_q(\widehat{\mathfrak{sl}}_{n+1})$$ $$R$$-matrix. By leveraging the resulting Yang-Baxter equations of the lattice model, we show that these polynomials simultaneously generalize double $$\beta$$-Grothendieck polynomials and dual double $$\beta$$-Grothendieck polynomials for arbitrary permutations. We then use properties of the model and Yang-Baxter equations to reprove Fomin-Kirillov's Cauchy identity for $$\beta$$-Grothendieck polynomials, generalize it to a new Cauchy identity for biaxial double $$\beta$$-Grothendieck polynomials, and prove a new branching rule for double $$\beta$$-Grothendieck polynomials. 
    more » « less