Recently, there has been much progress in understanding stationary measures for colored (also called multi-species or multi-type) interacting particle systems, motivated by asymptotic phenomena and rich underlying algebraic and combinatorial structures (such as nonsymmetric Macdonald polynomials). In this paper, we present a unified approach to constructing stationary measures for most of the known colored particle systems on the ring and the line, including (1) the Asymmetric Simple Exclusion Process (multispecies ASEP, or mASEP); (2) the q-deformed Totally Asymmetric Zero Range Process (TAZRP) also known as the q-Boson particle system; (3) the q-deformed Pushing Totally Asymmetric Simple Exclusion Process (q-PushTASEP). Our method is based on integrable stochastic vertex models and the Yang-Baxter equation. We express the stationary measures as partition functions of new "queue vertex models" on the cylinder. The stationarity property is a direct consequence of the Yang-Baxter equation. For the mASEP on the ring, a particular case of our vertex model is equivalent to the multiline queues of Martin (arXiv:1810.10650). For the colored q-Boson process and the q-PushTASEP on the ring, we recover and generalize known stationary measures constructed using multiline queues or other methods by Ayyer-Mandelshtam-Martin (arXiv:2011.06117, arXiv:2209.09859), and Bukh-Cox (arXiv:1912.03510). Our proofs of stationarity use the Yang-Baxter equation and bypass the Matrix Product Ansatz used for the mASEP by Prolhac-Evans-Mallick (arXiv:0812.3293). On the line and in a quadrant, we use the Yang-Baxter equation to establish a general colored Burke's theorem, which implies that suitable specializations of our queue vertex models produce stationary measures for particle systems on the line. We also compute the colored particle currents in stationarity.
more »
« less
Rewriting History in Integrable Stochastic Particle Systems
Abstract Many integrable stochastic particle systems in one space dimension (such as TASEP—Totally Asymmetric Simple Exclusion Process—and itsq-deformation, theq-TASEP) remain integrable if we equip each particle with its own speed parameter. In this work, we present intertwining relations between Markov transition operators of particle systems which differ by a permutation of the speed parameters. These relations generalize our previous works (Petrov and Saenz in Probab Theory Relat Fields 182:481–530, 2022), (Petrov in SIGMA 17(021):34, 2021), but here we employ a novel approach based on the Yang-Baxter equation for the higher spin stochastic six vertex model. Our intertwiners are Markov transition operators, which leads to interesting probabilistic consequences. First, we obtain a new Lax-type differential equation for the Markov transition semigroups of homogeneous, continuous-time versions of our particle systems. Our Lax equation encodes the time evolution of multipoint observables of theq-TASEP and TASEP in a unified way, which may be of interest for the asymptotic analysis of multipoint observables of these systems. Second, we show that our intertwining relations lead to couplings between probability measures on trajectories of particle systems which differ by a permutation of the speed parameters. The conditional distribution for such a coupling is realized as a “rewriting history” random walk which randomly resamples the trajectory of a particle in a chamber determined by the trajectories of the neighboring particles. As a byproduct, we construct a new coupling for standard Poisson processes on the positive real half-line with different rates.
more »
« less
- PAR ID:
- 10557405
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Communications in Mathematical Physics
- Volume:
- 405
- Issue:
- 12
- ISSN:
- 0010-3616
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We obtain a new relation between the distributions$$\upmu _t$$ at different times$$t\ge 0$$ of the continuous-time totally asymmetric simple exclusion process (TASEP) started from the step initial configuration. Namely, we present a continuous-time Markov process with local interactions and particle-dependent rates which maps the TASEP distributions$$\upmu _t$$ backwards in time. Under the backwards process, particles jump to the left, and the dynamics can be viewed as a version of the discrete-space Hammersley process. Combined with the forward TASEP evolution, this leads to a stationary Markov dynamics preserving$$\upmu _t$$ which in turn brings new identities for expectations with respect to$$\upmu _t$$ . The construction of the backwards dynamics is based on Markov maps interchanging parameters of Schur processes, and is motivated by bijectivizations of the Yang–Baxter equation. We also present a number of corollaries, extensions, and open questions arising from our constructions.more » « less
-
Abstract The pentagram map on polygons in the projective plane was introduced by R. Schwartz in 1992 and is by now one of the most popular and classical discrete integrable systems. In the present paper we introduce and prove integrability of long‐diagonal pentagram maps on polygons in , by now the most universal pentagram‐type map encompassing all known integrable cases. We also establish an equivalence of long‐diagonal and bi‐diagonal maps and present a simple self‐contained construction of the Lax form for both. Finally, we prove that the continuous limit of all these maps is equivalent to the ‐KdV equation, generalizing the Boussinesq equation for .more » « less
-
$$q$$ -Racah Ensemble and $$q$$-P$$\left (E_7^{(1)}/A_{1}^{(1)}\right )$$ Discrete Painlevé EquationAbstract The goal of this paper is to investigate the missing part of the story about the relationship between the orthogonal polynomial ensembles and Painlevé equations. Namely, we consider the $$q$$-Racah polynomial ensemble and show that the one-interval gap probabilities in this case can be expressed through a solution of the discrete $$q$$-P$$\left (E_7^{(1)}/A_{1}^{(1)}\right )$$ equation. Our approach also gives a new Lax pair for this equation. This Lax pair has an interesting additional involutive symmetry structure.more » « less
-
Abstract We consider the large deviations from the hydrodynamic limit of the Totally Asymmetric Simple Exclusion Process (TASEP). This problem was studied by Jensen and Varadhan and was shown to be related to entropy production in the inviscid Burgers equation. Here we prove the full large deviation principle. Our method relies on the explicit formula of Matetski, Quastel, and Remenik for the transition probabilities of the TASEP.more » « less
An official website of the United States government
