skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Few-mode frequency-modulated LiDAR receivers
We present a few-mode frequency-modulated receiver for light detection and ranging (LiDAR). We show that using a few-mode local oscillator (LO) with spatial modes at different frequencies at the receiver can significantly improve the performance of the LiDAR detection range. A preferred receiver architecture features LO modes with unequal frequency separations based on optical orthogonal codes (OOC) to allow range detection via cross correlation. The required signal-to-noise ratio (SNR) for the frequency-modulated continuous wave (FMCW) LiDAR decreases with the number of LO modes. This receiver can have a potential impact in the area of automotive LiDARs.  more » « less
Award ID(s):
1932858 1808976
PAR ID:
10156681
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
11
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 3127
Size(s):
Article No. 3127
Sponsoring Org:
National Science Foundation
More Like this
  1. A high resolution FMCW Lidar system based on a phase-diverse self-homodyne coherent receiver is demonstrated. Using the same linearly chirped waveform for both the transmitted lidar signal and the local oscillator, the self-homodyne coherent receiver performs frequency de-chirping in the photodiodes which significantly simplifies the task of signal processing, and the required receiver bandwidth can be much lower than the signal chirping bandwidth. While only amplitude modulation is required in the lidar transmitter, phase-diverse coherent receiver allows simultaneous detection of target range and velocity through the spectrum of the de-chirped complex waveform. Multi-target detection is also demonstrated experimentally. 
    more » « less
  2. This paper presents a novel system architecture to suppress in-band artifacts (IBAs) generated from out-of-band (OOB) interferers, including reciprocal mixing by the local oscillator's (LO) spurs and phase noise (PN), third-order intermodulation (IM3) artifacts, and harmonic down-conversion (HDC) artifacts. Theory and design procedure are explained, and measurement results from a prototype taped out in 45nm RF SOI process are presented. The receiver was designed for the frequency range of 1.2-2.4GHz and achieved a noise figure (NF) of 3.1-6.2dB, blocker -1dB compression point (B1dB) of -10.3Bm, and OOB third-order input-referred intercept point (IIP3) of 9.3dBm on average, before artifact suppression. Measurements were performed on 16-quadrature amplitude modulated (16QAM) signals with modulated and unmodulated OOB interferers to show artifact suppression for various kinds of IBA. For each IBA, artifact suppression performance was assessed across frequency and interferer power. Interference tolerance improvement of up to 38dB was achieved. Additionally, reconstruction of the artifacts for the cases of spur and HDC was demonstrated, showing simultaneous recovery of two signals, providing a form of carrier aggregation. 
    more » « less
  3. Abstract Frequency-modulated continuous wave (FMCW) light detection and ranging (LiDAR) is an emerging 3D ranging technology that offers high sensitivity and ranging precision. Due to the limited bandwidth of digitizers and the speed limitations of beam steering using mechanical scanners, meter-scale FMCW LiDAR systems typically suffer from a low 3D frame rate, which greatly restricts their applications in real-time imaging of dynamic scenes. In this work, we report a high-speed FMCW based 3D imaging system, combining a grating for beam steering with a compressed time-frequency analysis approach for depth retrieval. We thoroughly investigate the localization accuracy and precision of our system both theoretically and experimentally. Finally, we demonstrate 3D imaging results of multiple static and moving objects, including a flexing human hand. The demonstrated technique achieves submillimeter localization accuracy over a tens-of-centimeter imaging range with an overall depth voxel acquisition rate of 7.6 MHz, enabling densely sampled 3D imaging at video rate. 
    more » « less
  4. Raynal, Ann M.; Ranney, Kenneth I. (Ed.)
    Control of orbital angular momentum (OAM) offers the potential for increases in control, sensitivity, and security for high-performance microwave systems. OAM is characterized by an integer OAM mode where zero represents the case of a plane wave. Microwaves with a nonzero OAM mode propagate with a helical wavefront. Orthogonal OAM modes can be used to carry distinct information at the same frequency and polarization, increasing the data rate. The OAM waveform may also increase radar detection capability for certain shaped objects. OAM can be induced by broadcasting a plane wave through a spatial phase plate (SPP) dielectric which introduces an azimuthally dependent phase delay. However, SPPs are frequency-specific, which presents an obstacle for harnessing OAM in frequency-modulated communication systems and wide-bandwidth radar. In this study, we develop a circular phased array to synthesize the desired vortex-shaped wavefront. This approach offers a critical advantage: the phases of all antenna elements are easily programmable under different frequencies. As a result, transmission and reception of the OAM beam can be controlled with great flexibility, making it operable over a wide frequency spectrum, which leverages OAM radar functionality and performance. In this paper, we will investigate a wide-bandwidth radar with OAM mode-control and signal processing. 
    more » « less
  5. null (Ed.)
    We present a scheme for spatial-mode-selective frequency conversion in a few-mode fiber and experimentally demonstrate upconversion of arbitrary superpositions of two signal modes from C-band to the fundamental mode in S-band with conversion efficiencies within 1 dB range of one another. 
    more » « less