skip to main content

Title: Reconfigurable mode-selective frequency conversion in a three-mode fiber
We present a scheme for spatial-mode-selective frequency conversion in a few-mode fiber and experimentally demonstrate upconversion of arbitrary superpositions of two signal modes from C-band to the fundamental mode in S-band with conversion efficiencies within 1 dB range of one another.  more » « less
Award ID(s):
1842680 1937860
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Photonics Conference 2020
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a scheme for spatial-mode-selective frequency conversion in a few-mode fiber and experimentally demonstrate upconversion of either of two signal modes from C-band to fundamental mode in S-band with crosstalk below –15.5 dB. 
    more » « less
  2. García-Blanco, Sonia M. ; Cheben, Pavel (Ed.)
    We present principles of leaky-mode photonic lattices explaining key properties enabling potential device applications. The one-dimensional grating-type canonical model is rich in properties and conceptually transparent encompassing all essential attributes applicable to two-dimensional metasurfaces and periodic photonic slabs. We address the operative physical mechanisms grounded in lateral leaky Bloch mode resonance emphasizing the significant influence imparted by the periodicity and the waveguide characteristics of the lattice. The effects discussed are not explainable in terms of local Fabry-Perot or Mie resonances. In particular, herein, we summarize the band dynamics of the leaky stopband revealing principal Bragg diffraction processes responsible for band-gap size and band closure conditions. We review Bloch wave vector control of spectral characteristics in terms of distinct evanescent diffraction channels driving designated Bloch modes in the lattice. 
    more » « less
  3. Non-mode-selective (NMS) multiplexers (muxes) are highly desirable for coherent power combining to produce a high-power beam with a shaped profile (wavefront synthesis) from discrete, phase-locked emitters. We propose a design for a multi-plane light conversion (MPLC)-based NMS mux, which requires only a few phase masks for coherently combining hundreds of discrete input beams into an output beam consisting of hundreds of Hermite–Gaussian (HG) modes. The combination of HG modes as a base can further construct a beam with arbitrary wavefront. The low number of phase masks is attributed to the identical zero-crossing structure of the Hadamard-coded input arrays and of the output HG modes, enabling the practicality of such devices. An NMS mux supporting 256 HG modes is designed using only seven phase masks, and achieves an insertion loss of1.6  dB, mode-dependent loss of 4.7 dB, and average total mode crosstalk of4.4  dB. Additionally, this design, featuring equal power for all input beams, enables phase-only control in coherent power combining, resulting in significant simplifications and fast convergence compared with phase-and-amplitude control.

    more » « less
  4. Abstract

    In this work, mode conversion and wavefront shaping by integrating a metallic metasurface on top of a planar waveguide are proposed and demonstrated. The metasurface consists of C‐shaped nanoantennas. By controlling the orientation of each nanoantenna, mode conversion and focusing effect for the cross‐polarized electric fields inside the waveguide are achieved. The design and simulation results of 16 scenarios of wideband transverse‐magnetic to transverse‐electric mode converters with the mode purity up to 98%, and on‐chip lenses at the wavelength of 1550 nm are reported. It is worth noting that the dimension of the devices along the propagation direction is only 9.6 µm. This work manifests the potential application of mode division multiplexing systems and on‐chip optical interconnections based on metasurfaces.

    more » « less
  5. null (Ed.)
    We describe OAM-compatible mode-selective frequency conversion in a few-mode fiber and experimentally demonstrate downconversion of various superpositions of signal modes LP11a and LP11b to the same LP11b mode with conversion efficiency differences <0.8 dB. 
    more » « less