The formation of dimer [(μ-Cl)Rh-(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)(o-C6H4CH2SiiPrnPr))]2 (Rh-3) with an n-propyl group on one of the silicon atoms as a minor product was affected by the reaction of [RhCl(COD)]2 with proligand PhP(o-C6H4CH2SiHiPr2)2, L1. The major product of the reaction was monomeric 14-electron Rh(III) complex [ClRh(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2)] (Rh-1). Computations revealed that the monomer–dimer equilibrium is shifted toward the monomer with four isopropyl substituents on the two Si atoms of the ligand as in Rh-1; conversely, the dimer is favored with only one n-propyl as in Rh-3, and with less bulky alkyl substituents such as in [ClRh(κ3(P,Si,Si)PhP(o-C6H4CH2SiMe2)2]2 (Rh-2). Computations on the mechanism of formation of Rh-3 directly from [RhCl(COD)]2 are in agreement with the experimental findings and it is found to be less energetic than if stemming from Rh-1. Additionally, a Si–O–Si complex, [μ-Cl-Rh{κ3(P,Si,C)PPh(o-C6H4CH2SiiPrO SiiPr2CH-o-C6H4)}]2, Rh-4, is generated from the reaction of Rh-1 with adventitious water as a result of intramolecular C–H activation.
more »
« less
14-Electron Rh and Ir silylphosphine complexes and their catalytic activity in alkene functionalization with hydrosilanes
Herein we report an experimental and computational study of a family of four coordinated 14-electron complexes of Rh( iii ) devoid of agostic interactions. The complexes [X–Rh(κ 3 ( P,Si,Si )PhP( o -C 6 H 4 CH 2 Si i Pr 2 ) 2 ], where X = Cl (Rh-1), Br (Rh-2), I (Rh-3), OTf (Rh-4), Cl·GaCl 3 (Rh-5); derive from a bis(silyl)- o -tolylphosphine with isopropyl substituents on the Si atoms. All five complexes display a sawhorse geometry around Rh and exhibit similar spectroscopic and structural properties. The catalytic activity of these complexes and [Cl–Ir(κ 3 ( P,Si,Si )PhP( o -C 6 H 4 CH 2 Si i Pr 2 ) 2 ], Ir-1, in styrene and aliphatic alkene functionalizations with hydrosilanes is disclosed. We show that Rh-1 catalyzes effectively the dehydrogenative silylation of styrene with Et 3 SiH in toluene while it leads to hydrosilylation products in acetonitrile. Rh-1 is an excellent catalyst in the sequential isomerization/hydrosilylation of terminal and remote aliphatic alkenes with Et 3 SiH including hexene isomers, leading efficiently and selectively to the terminal anti-Markonikov hydrosilylation product in all cases. With aliphatic alkenes, no hydrogenation products are observed. Conversely, catalysis of the same hexene isomers by Ir-1 renders allyl silanes, the tandem isomerization/dehydrogenative silylation products. A mechanistic proposal is made to explain the catalysis with these M( iii ) complexes.
more »
« less
- Award ID(s):
- 2102689
- PAR ID:
- 10320244
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 50
- Issue:
- 34
- ISSN:
- 1477-9226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The origin in deshielding of 29 Si NMR chemical shifts in R 3 Si–X, where X = H, OMe, Cl, OTf, [CH 6 B 11 X 6 ], toluene, and O X (O X = surface oxygen), as well as i Pr 3 Si + and Mes 3 Si + were studied using DFT methods. At the M06-L/6-31G(d,p) level of theory the geometry optimized structures agree well with those obtained experimentally. The trends in 29 Si NMR chemical shift also reproduce experimental trends; i Pr 3 Si–H has the most shielded 29 Si NMR chemical shift and free i Pr 3 Si + or isolable Mes 3 Si + have the most deshielded 29 Si NMR chemical shift. Natural localized molecular orbital (NLMO) analysis of the contributions to paramagnetic shielding ( σ p ) in these compounds shows that Si–R (R = alkyl, H) bonding orbitals are the major contributors to deshielding in this series. The Si–R bonding orbitals are coupled to the empty p-orbital in i Pr 3 Si + or Mes 3 Si + , or to the orbital in R 3 Si–X. This trend also applies to surface bound R 3 Si–O X . This model also explains chemical shift trends in recently isolated t Bu 2 SiH 2 + , t BuSiH 2 + , and SiH 3 + that show more shielded 29 Si NMR signals than R 3 Si + species. There is no correlation between isotropic 29 Si NMR chemical shift and charge at silicon.more » « less
-
Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O.more » « less
-
Reactions of trans-[[upper bond 1 start]Fe(CO)2(NO)(As((CH2)n)3As[upper bond 1 end])]+ BF4− (n = 10, 12, 14) and Bu4N+ Cl− afford the title compounds As((CH2)n)3As, which upon reaction (n = 14) with MCl2 (M = Pt, Ni), Rh(CO)(Cl), and Fe(CO)3 sources reconstitute cage like complexes trans-[upper bond 1 start]MLn(As((CH2)14)3A[upper bond 1 end]s). Reactions with H2O2 and BH3 give the corresponding arsine oxides and boranes. Crystal structures of metal-free species reveal out,out isomers, but cage complex formation is proposed to entail homeomorphic isomerization to in,in isomers with endo directed lone pairs.more » « less
-
Three cyclopentadienylmolybdenum(II) propionyl complexes featuring triarylphosphine ligands with different para substituents, namely, dicarbonyl(η 5 -cyclopentadienyl)propionyl(triphenylphosphane-κ P )molybdenum(II), [Mo(C 5 H 5 )(C 3 H 5 O)(C 18 H 15 P)(CO) 2 ], ( 1 ), dicarbonyl(η 5 -cyclopentadienyl)propionyl[tris(4-fluorophenyl)phosphane-κ P ]molybdenum(II), [Mo(C 5 H 5 )(C 3 H 5 O)(C 18 H 12 F 3 P)(CO) 2 ], ( 2 ), and dicarbonyl(η 5 -cyclopentadienyl)propionyl[tris(4-methoxyphenyl)phosphane-κ P ]molybdenum(II) dichloromethane solvate, [Mo(C 5 H 5 )(C 3 H 5 O)(C 21 H 21 O 3 P)(CO) 2 ]·CH 2 Cl 2 , ( 3 ), have been prepared from the corresponding ethyl complexes via phosphine-induced migratory insertion. These complexes exhibit four-legged piano-stool geometries with molecular structures quite similar to each other and to related acetyl complexes. The extended structures of the three complexes differ somewhat, with the para substituent of the triarylphosphine of ( 2 ) (fluoro) or ( 3 ) (methoxy) engaging in non-classical C—H...F or C—H...O hydrogen-bonding interactions. The structure of ( 3 ) exhibits modest disorder in the position of one Cl atom of the dichloromethane solvent, which was modeled with two sites showing approximately equivalent occupancies [0.532 (15) and 0.478 (15)].more » « less