skip to main content


Title: Velody: Nonlinear Vibration Challenge-Response for Resilient User Authentication
Biometrics have been widely adopted for enhancing user authentication, benefiting usability by exploiting pervasive and collectible unique characteristics from physiological or behavioral traits of human. However, successful attacks on "static" biometrics such as fingerprints have been reported where an adversary acquires users' biometrics stealthily and compromises non-resilient biometrics. To mitigate the vulnerabilities of static biometrics, we leverage the unique and nonlinear hand-surface vibration response and design a system called Velody to defend against various attacks including replay and synthesis. The Velody system relies on two major properties in hand-surface vibration responses: uniqueness, contributed by physiological characteristics of human hands, and nonlinearity, whose complexity prevents attackers from predicting the response to an unseen challenge. Velody employs a challenge-response protocol. By changing the vibration challenge, the system elicits input-dependent nonlinear "symptoms" and unique spectrotemporal features in the vibration response, stopping both replay and synthesis attacks. Also, a large number of disposable challenge-response pairs can be collected during enrollment passively for daily authentication sessions. We build a prototype of Velody with an off-the-shelf vibration speaker and accelerometers to verify its usability and security through a comprehensive user experiment. Our results show that Velody demonstrates both strong security and long-term consistency with a low equal error rate (EER) of 5.8% against impersonation attack while correctly rejecting all other attacks including replay and synthesis attacks using a very short vibration challenge.  more » « less
Award ID(s):
1719336 1845469
NSF-PAR ID:
10156906
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security
Page Range / eLocation ID:
1201 - 1213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile devices typically rely on entry-point and other one-time authentication mechanisms such as a password, PIN, fingerprint, iris, or face. But these authentication types are prone to a wide attack vector and worse 1 INTRODUCTION Currently smartphones are predominantly protected a patterned password is prone to smudge attacks, and fingerprint scanning is prone to spoof attacks. Other forms of attacks include video capture and shoulder surfing. Given the increasingly important roles smartphones play in e-commerce and other operations where security is crucial, there lies a strong need of continuous authentication mechanisms to complement and enhance one-time authentication such that even if the authentication at the point of login gets compromised, the device is still unobtrusively protected by additional security measures in a continuous fashion. The research community has investigated several continuous authentication mechanisms based on unique human behavioral traits, including typing, swiping, and gait. To this end, we focus on investigating physiological traits. While interacting with hand-held devices, individuals strive to achieve stability and precision. This is because a certain degree of stability is required in order to manipulate and interact successfully with smartphones, while precision is needed for tasks such as touching or tapping a small target on the touch screen (Sitov´a et al., 2015). As a result, to achieve stability and precision, individuals tend to develop their own postural preferences, such as holding a phone with one or both hands, supporting hands on the sides of upper torso and interacting, keeping the phone on the table and typing with the preferred finger, setting the phone on knees while sitting crosslegged and typing, supporting both elbows on chair handles and typing. On the other hand, physiological traits, such as hand-size, grip strength, muscles, age, 424 Ray, A., Hou, D., Schuckers, S. and Barbir, A. Continuous Authentication based on Hand Micro-movement during Smartphone Form Filling by Seated Human Subjects. DOI: 10.5220/0010225804240431 In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 424-431 ISBN: 978-989-758-491-6 Copyrightc 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved still, once compromised, fail to protect the user’s account and data. In contrast, continuous authentication, based on traits of human behavior, can offer additional security measures in the device to authenticate against unauthorized users, even after the entry-point and one-time authentication has been compromised. To this end, we have collected a new data-set of multiple behavioral biometric modalities (49 users) when a user fills out an account recovery form in sitting using an Android app. These include motion events (acceleration and angular velocity), touch and swipe events, keystrokes, and pattern tracing. In this paper, we focus on authentication based on motion events by evaluating a set of score level fusion techniques to authenticate users based on the acceleration and angular velocity data. The best EERs of 2.4% and 6.9% for intra- and inter-session respectively, are achieved by fusing acceleration and angular velocity using Nandakumar et al.’s likelihood ratio (LR) based score fusion. 
    more » « less
  2. As account compromises and malicious online attacks are on the rise, multi-factor authentication (MFA) has been adopted to defend against these attacks. OTP and mobile push notification are just two examples of the popularly adopted MFA factors. Although MFA improve security, they also add additional steps or hardware to the authentication process, thus increasing the authentication time and introducing friction. On the other hand, keystroke dynamics-based authentication is believed to be a promising MFA for increasing security while reducing friction. While there have been several studies on the usability of other MFA factors, the usability of keystroke dynamics has not been studied. To this end, we have built a web authentication system with the standard features of signup, login and account recovery, and integrated keystroke dynamics as an additional factor. We then conducted a user study on the system where 20 participants completed tasks related to signup, login and account recovery. We have also evaluated a new approach for completing the user enrollment process, which reduces friction by naturally employing other alternative MFA factors (OTP in our study) when keystroke dynamics is not ready for use. Our study shows that while maintaining strong security (0% FPR), adding keystroke dynamics reduces authentication friction by avoiding 66.3% of OTP at login and 85.8% of OTP at account recovery, which in turn reduces the authentication time by 63.3% and 78.9% for login and account recovery respectively. Through an exit survey, all participants have rated the integration of keystroke dynamics with OTP to be more preferable to the conventional OTP-only authentication. 
    more » « less
  3. Typical cybersecurity solutions emphasize on achieving defense functionalities. However, execution efficiency and scalability are equally important, especially for real-world deployment. Straightforward mappings of cybersecurity applications onto HPC platforms may significantly underutilize the HPC devices’ capacities. On the other hand, the sophisticated implementations are quite difficult: they require both in-depth understandings of cybersecurity domain-specific characteristics and HPC architecture and system model. In our work, we investigate three sub-areas in cybersecurity, including mobile software security, network security, and system security. They have the following performance issues, respectively: 1) The flow- and context-sensitive static analysis for the large and complex Android APKs are incredibly time-consuming. Existing CPU-only frameworks/tools have to set a timeout threshold to cease the program analysis to trade the precision for performance. 2) Network intrusion detection systems (NIDS) use automata processing as its searching core and requires line-speed processing. However, achieving high-speed automata processing is exceptionally difficult in both algorithm and implementation aspects. 3) It is unclear how the cache configurations impact time-driven cache side-channel attacks’ performance. This question remains open because it is difficult to conduct comparative measurement to study the impacts. In this dissertation, we demonstrate how application-specific characteristics can be leveraged to optimize implementations on various types of HPC for faster and more scalable cybersecurity executions. For example, we present a new GPU-assisted framework and a collection of optimization strategies for fast Android static data-flow analysis that achieve up to 128X speedups against the plain GPU implementation. For network intrusion detection systems (IDS), we design and implement an algorithm capable of eliminating the state explosion in out-of-order packet situations, which reduces up to 400X of the memory overhead. We also present tools for improving the usability of Micron’s Automata Processor. To study the cache configurations’ impact on time-driven cache side-channel attacks’ performance, we design an approach to conducting comparative measurement. We propose a quantifiable success rate metric to measure the performance of time-driven cache attacks and utilize the GEM5 platform to emulate the configurable cache. 
    more » « less
  4. Reliably identifying and authenticating smartphones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smartphone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Authentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%. 
    more » « less
  5. Reliably identifying and authenticating smart- phones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smart- phone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Au- thentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge response protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%. 
    more » « less