skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A User Study of Keystroke Dynamics as Second Factor in Web MFA
As account compromises and malicious online attacks are on the rise, multi-factor authentication (MFA) has been adopted to defend against these attacks. OTP and mobile push notification are just two examples of the popularly adopted MFA factors. Although MFA improve security, they also add additional steps or hardware to the authentication process, thus increasing the authentication time and introducing friction. On the other hand, keystroke dynamics-based authentication is believed to be a promising MFA for increasing security while reducing friction. While there have been several studies on the usability of other MFA factors, the usability of keystroke dynamics has not been studied. To this end, we have built a web authentication system with the standard features of signup, login and account recovery, and integrated keystroke dynamics as an additional factor. We then conducted a user study on the system where 20 participants completed tasks related to signup, login and account recovery. We have also evaluated a new approach for completing the user enrollment process, which reduces friction by naturally employing other alternative MFA factors (OTP in our study) when keystroke dynamics is not ready for use. Our study shows that while maintaining strong security (0% FPR), adding keystroke dynamics reduces authentication friction by avoiding 66.3% of OTP at login and 85.8% of OTP at account recovery, which in turn reduces the authentication time by 63.3% and 78.9% for login and account recovery respectively. Through an exit survey, all participants have rated the integration of keystroke dynamics with OTP to be more preferable to the conventional OTP-only authentication.  more » « less
Award ID(s):
2122746
PAR ID:
10422315
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CODASPY '23: Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy
Page Range / eLocation ID:
61 to 72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Account recovery is ubiquitous across web applications but circumvents the username/password-based login step. Therefore, it deserves the same level of security as the user authentication process. A common simplistic procedure for account recovery requires that a user enters the same email used during registration, to which a password recovery link or a new username could be sent. Therefore, an impostor with access to a user’s registration email and other credentials can trigger an account recovery session to take over the user’s account. To prevent such attacks, beyond validating the email and other credentials entered by the user, our proposed recovery method utilizes keystroke dynamics to further secure the account recovery mechanism. Keystroke dynamics is a type of behavioral biometrics that uses the analysis of typing rhythm for user authentication. Using a new dataset with over 500,000 keystrokes collected from 44 students and university staff when they fill out an account recovery web form of multiple fields, we have evaluated the performance of five scoring algorithms on individual fields as well as feature-level fusion and weighted-score fusion. We achieve the best EER of 5.47% when keystroke dynamics from individual fields are used, 0% for a feature-level fusion of five fields, and 0% for a weighted-score fusion of seven fields. Our work represents a new kind of keystroke dynamics that we would like to call it ‘medium fixed-text’ as it sits between the conventional (short) fixed text and (long) free text research. 
    more » « less
  2. Reliably identifying and verifying subjects remains integral to computer system security. Various novel authentication techniques, such as biometric authentication systems, have been developed in recent years. This article provides a detailed review of keystroke-based authentication systems and their applications. Keystroke dynamics is a behavioral biometric that is emerging as an important tool for cybersecurity as it promises to be nonintrusive and cost-effective. In addition, no additional hardware is required, making it convenient to deploy. This survey covers novel keystroke datasets, state-of-the-art keystroke authentication algorithms, keystroke authentication on touch screen and mobile devices, and various prominent applications of such techniques beyond authentication. The article covers all the significant aspects of keystroke dynamics and can be considered a reference for future researchers in this domain. The article includes a discussion of the latest keystroke datasets, providing researchers with an up-to-date resource for analysis and experimentation. In addition, this survey covers the state-of-the-art algorithms adopted within this domain, offering insights into the cutting-edge techniques utilized for keystroke analysis. Moreover, this article explains the diverse applications of keystroke dynamics, particularly focusing on security, verification, and identification uses. Beyond these crucial areas, we mention additional applications where keystroke dynamics can be applied, broadening the scope of understanding regarding its potential impact across various domains. Unlike previous survey articles, which typically concentrate on specific aspects of keystroke dynamics, our comprehensive analysis presents all relevant areas within this field. By introducing discussions on the latest advances, we provide readers with a thorough understanding of the current landscape and emerging trends in keystroke dynamics research. Furthermore, this article presents a summary of future research opportunities, highlighting potential areas for exploration and development within the realm of keystroke dynamics. This forward-looking perspective aims to inspire further inquiry and innovation, guiding the trajectory of future studies in this dynamic field. 
    more » « less
  3. The ubiquity of mobile devices nowadays necessitates securing the apps and user information stored therein. However, existing one-time entry-point authentication mechanisms and enhanced security mechanisms such as Multi-Factor Authentication (MFA) are prone to a wide vector of attacks. Furthermore, MFA also introduces friction to the user experience. Therefore, what is needed is continuous authentication that once passing the entry-point authentication, will protect the mobile devices on a continuous basis by confirming the legitimate owner of the device and locking out detected impostor activities. Hence, more research is needed on the dynamic methods of mobile security such as behavioral biometrics-based continuous authentication, which is cost-effective and passive as the data utilized to authenticate users are logged from the phone's sensors. However, currently, there are not many mobile authentication datasets to perform benchmarking research. In this work, we share two novel mobile datasets (Clarkson University (CU) Mobile datasets I and II) consisting of multi-modality behavioral biometrics data from 49 and 39 users respectively (88 users in total). Each of our datasets consists of modalities such as swipes, keystrokes, acceleration, gyroscope, and pattern-tracing strokes. These modalities are collected when users are filling out a registration form in sitting both as genuine and impostor users. To exhibit the usefulness of the datasets, we have performed initial experiments on selected individual modalities from the datasets as well as the fusion of simultaneously available modalities. 
    more » « less
  4. Phone-based authenticators (PBAs) are commonly incorporated into multi-factor authentication and passwordless login schemes for corporate networks and systems. These systems require users to prove that they possess a phone or phone number associated with an account. The out-of-band nature of PBAs and their security may not be well understood by users. Further, the frequency of PBA prompts may desensitize users and lead to increased susceptibility to phishing or social engineering. We explore such risks to PBAs by exploring PBA implementation options and two types of attacks. When employed with a real-world PBA system, we found the symptoms of such attacks were subtle. A subsequent user study revealed that none of our participants noticed the attack symptoms, highlighting the limitations and risks associated with PBAs. 
    more » « less
  5. Text passwords remain a primary means for user authentication on modern computer systems. However, recent studies have shown the promises of guessing user passwords efficiently with auxiliary information of the targeted accounts, such as the users' personal information, previously used passwords, or those used in other systems. Authentication rate-limiting mechanisms, such as account lockout and login throttling, are common methods to defeat online password cracking attacks. But to date, no published studies have investigated how authentication rate-limiting is implemented by popular websites. In this paper, we present a measurement study of such countermeasures against online password cracking. Towards this end, we propose a black-box approach to modeling and validating the websites' implementation of the rate-limiting mechanisms. We applied the tool to examine all 182 websites that we were able to analyze in the Alexa Top 500 websites in the United States. The results are rather surprising: 131 websites (72%) allow frequent, unsuccessful login attempts without account lockout or login throttling (though some of these websites force the adversary to lower the login frequency or constantly change his IP addresses to circumvent the rate-limiting enforcement). The remaining 51 websites are not absolutely secure either: 28 websites may block a legitimate user with correct passwords when the account is locked out, effectively enabling authentication denial-of-service attacks. 
    more » « less