skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A User Study of Keystroke Dynamics as Second Factor in Web MFA
As account compromises and malicious online attacks are on the rise, multi-factor authentication (MFA) has been adopted to defend against these attacks. OTP and mobile push notification are just two examples of the popularly adopted MFA factors. Although MFA improve security, they also add additional steps or hardware to the authentication process, thus increasing the authentication time and introducing friction. On the other hand, keystroke dynamics-based authentication is believed to be a promising MFA for increasing security while reducing friction. While there have been several studies on the usability of other MFA factors, the usability of keystroke dynamics has not been studied. To this end, we have built a web authentication system with the standard features of signup, login and account recovery, and integrated keystroke dynamics as an additional factor. We then conducted a user study on the system where 20 participants completed tasks related to signup, login and account recovery. We have also evaluated a new approach for completing the user enrollment process, which reduces friction by naturally employing other alternative MFA factors (OTP in our study) when keystroke dynamics is not ready for use. Our study shows that while maintaining strong security (0% FPR), adding keystroke dynamics reduces authentication friction by avoiding 66.3% of OTP at login and 85.8% of OTP at account recovery, which in turn reduces the authentication time by 63.3% and 78.9% for login and account recovery respectively. Through an exit survey, all participants have rated the integration of keystroke dynamics with OTP to be more preferable to the conventional OTP-only authentication.  more » « less
Award ID(s):
2122746
PAR ID:
10422315
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CODASPY '23: Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy
Page Range / eLocation ID:
61 to 72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Account recovery is ubiquitous across web applications but circumvents the username/password-based login step. Therefore, it deserves the same level of security as the user authentication process. A common simplistic procedure for account recovery requires that a user enters the same email used during registration, to which a password recovery link or a new username could be sent. Therefore, an impostor with access to a user’s registration email and other credentials can trigger an account recovery session to take over the user’s account. To prevent such attacks, beyond validating the email and other credentials entered by the user, our proposed recovery method utilizes keystroke dynamics to further secure the account recovery mechanism. Keystroke dynamics is a type of behavioral biometrics that uses the analysis of typing rhythm for user authentication. Using a new dataset with over 500,000 keystrokes collected from 44 students and university staff when they fill out an account recovery web form of multiple fields, we have evaluated the performance of five scoring algorithms on individual fields as well as feature-level fusion and weighted-score fusion. We achieve the best EER of 5.47% when keystroke dynamics from individual fields are used, 0% for a feature-level fusion of five fields, and 0% for a weighted-score fusion of seven fields. Our work represents a new kind of keystroke dynamics that we would like to call it ‘medium fixed-text’ as it sits between the conventional (short) fixed text and (long) free text research. 
    more » « less
  2. The ubiquity of mobile devices nowadays necessitates securing the apps and user information stored therein. However, existing one-time entry-point authentication mechanisms and enhanced security mechanisms such as Multi-Factor Authentication (MFA) are prone to a wide vector of attacks. Furthermore, MFA also introduces friction to the user experience. Therefore, what is needed is continuous authentication that once passing the entry-point authentication, will protect the mobile devices on a continuous basis by confirming the legitimate owner of the device and locking out detected impostor activities. Hence, more research is needed on the dynamic methods of mobile security such as behavioral biometrics-based continuous authentication, which is cost-effective and passive as the data utilized to authenticate users are logged from the phone's sensors. However, currently, there are not many mobile authentication datasets to perform benchmarking research. In this work, we share two novel mobile datasets (Clarkson University (CU) Mobile datasets I and II) consisting of multi-modality behavioral biometrics data from 49 and 39 users respectively (88 users in total). Each of our datasets consists of modalities such as swipes, keystrokes, acceleration, gyroscope, and pattern-tracing strokes. These modalities are collected when users are filling out a registration form in sitting both as genuine and impostor users. To exhibit the usefulness of the datasets, we have performed initial experiments on selected individual modalities from the datasets as well as the fusion of simultaneously available modalities. 
    more » « less
  3. Phone-based authenticators (PBAs) are commonly incorporated into multi-factor authentication and passwordless login schemes for corporate networks and systems. These systems require users to prove that they possess a phone or phone number associated with an account. The out-of-band nature of PBAs and their security may not be well understood by users. Further, the frequency of PBA prompts may desensitize users and lead to increased susceptibility to phishing or social engineering. We explore such risks to PBAs by exploring PBA implementation options and two types of attacks. When employed with a real-world PBA system, we found the symptoms of such attacks were subtle. A subsequent user study revealed that none of our participants noticed the attack symptoms, highlighting the limitations and risks associated with PBAs. 
    more » « less
  4. Text passwords remain a primary means for user authentication on modern computer systems. However, recent studies have shown the promises of guessing user passwords efficiently with auxiliary information of the targeted accounts, such as the users' personal information, previously used passwords, or those used in other systems. Authentication rate-limiting mechanisms, such as account lockout and login throttling, are common methods to defeat online password cracking attacks. But to date, no published studies have investigated how authentication rate-limiting is implemented by popular websites. In this paper, we present a measurement study of such countermeasures against online password cracking. Towards this end, we propose a black-box approach to modeling and validating the websites' implementation of the rate-limiting mechanisms. We applied the tool to examine all 182 websites that we were able to analyze in the Alexa Top 500 websites in the United States. The results are rather surprising: 131 websites (72%) allow frequent, unsuccessful login attempts without account lockout or login throttling (though some of these websites force the adversary to lower the login frequency or constantly change his IP addresses to circumvent the rate-limiting enforcement). The remaining 51 websites are not absolutely secure either: 28 websites may block a legitimate user with correct passwords when the account is locked out, effectively enabling authentication denial-of-service attacks. 
    more » « less
  5. Multifactor authentication (MFA) is one of the most important security controls, topping most lists of cyber hygiene activities advocated by experts. While the security benefits may be substantial, less attention has been paid to the impact on users by the added friction introduced by the more stringent precautions. In this paper, we construct and analyze a dataset of authentication logs from a University population spanning two years. We focus on opportunity costs experienced by users: (1) log-in failures and (2) the time spent away from IT applications following a failed authentication before attempting to re-authenticate. The second measure captures how user frustration can manifest by avoiding or delaying future engagement after experiencing failures. Following an exogenous change in MFA policy from a deny/approve mobile notification to a more cumbersome two-digit code mobile notification confirmation, we show that there are significant increases in the number of log-in failures and in time spent away following failures when using mobile MFA. We also briefly examine which types of users had the greatest difficulty adjusting to the more secure mobile MFA procedure. 
    more » « less