skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximate Hardware Techniques for Energy-Quality Scaling Across the System
For error-resilient applications, such as machine learning and signal processing, a significant improvement in energy efficiency can be achieved by relaxing exactness constraint on output quality. This paper presents a taxonomy of hardware techniques to exploit the trade-off between energy efficiency and quality in various computer subsystems. We classify approximate hardware techniques according to target subsystem and support for dynamic energy-quality scaling.  more » « less
Award ID(s):
1845469
PAR ID:
10156925
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2020 International Conference on Electronics, Information, and Communication (ICEIC)
Page Range / eLocation ID:
1 - 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Approximate communication is being seriously considered as an effective technique for reducing power consumption and improving the communication efficiency of network-on-chips (NoCs). A major problem faced by these techniques is quality control: how do we ensure that the network will transmit data with sufficient accuracy for applications to produce acceptable results? Previous methods that addressed this issue require each application to calculate the approximation level for every piece of approximable data, which takes hundreds of cycles. So the approximation information is often not available when a request packet is transmitted. Therefore, the reply packet with the approximable data is transmitted with unnecessarily absolute accuracy, reducing the effectiveness of approximate communication. In this paper, we propose a hardware-based quality management framework for approximate communication to minimize the time needed for the approximation level calculation. The proposed framework employs a configuration algorithm to continuously adjust the quality of every piece of data based on the difference between the output quality and the application's quality requirement. When the proposed framework is implemented in a network, every request packet can be transmitted with the updated approximation level. This framework results in fewer flits in each data packet and reduces traffic in NoCs while meeting the quality requirements of applications. Our cycle-accurate simulation using the AxBench benchmark suite shows that the proposed online quality management framework can reduce network latency by up to 52% and dynamic power consumption by 59% compared to previous approximate communication techniques while ensuring 95% output quality. This hardware-software codesign incurs 1% area overhead over previous techniques. 
    more » « less
  2. The record-breaking performance of deep neural networks (DNNs) comes with heavy parameter budgets, which leads to external dynamic random access memory (DRAM) for storage. The prohibitive energy of DRAM accesses makes it nontrivial for DNN deployment on resource-constrained devices, calling for minimizing the movements of weights and data in order to improve the energy efficiency. Driven by this critical bottleneck, we present SmartDeal, a hardware-friendly algorithm framework to trade higher-cost memory storage/access for lower-cost computation, in order to aggressively boost the storage and energy efficiency, for both DNN inference and training. The core technique of SmartDeal is a novel DNN weight matrix decomposition framework with respective structural constraints on each matrix factor, carefully crafted to unleash the hardware-aware efficiency potential. Specifically, we decompose each weight tensor as the product of a small basis matrix and a large structurally sparse coefficient matrix whose nonzero elements are readily quantized to the power-of-2. The resulting sparse and readily quantized DNNs enjoy greatly reduced energy consumption in data movement as well as weight storage, while incurring minimal overhead to recover the original weights thanks to the required sparse bit-operations and cost-favorable computations. Beyond inference, we take another leap to embrace energy-efficient training, by introducing several customized techniques to address the unique roadblocks arising in training while preserving the SmartDeal structures. We also design a dedicated hardware accelerator to fully utilize the new weight structure to improve the real energy efficiency and latency performance. We conduct experiments on both vision and language tasks, with nine models, four datasets, and three settings (inference-only, adaptation, and fine-tuning). Our extensive results show that 1) being applied to inference, SmartDeal achieves up to 2.44x improvement in energy efficiency as evaluated using real hardware implementations and 2) being applied to training, SmartDeal can lead to 10.56x and 4.48x reduction in the storage and the training energy cost, respectively, with usually negligible accuracy loss, compared to state-of-the-art training baselines. Our source codes are available at: https://github.com/VITA-Group/SmartDeal. 
    more » « less
  3. In recent years, neuromorphic computing systems (NCS) have gained popularity in accelerating neural network computation because of their high energy efficiency. The known vulnerability of neural networks to adversarial attack, however, raises a severe security concern of NCS. In addition, there are certain application scenarios in which users have limited access to the NCS. In such scenarios, defense technologies that require changing the training methods of the NCS, e.g., adversarial training become impracticable. In this work, we propose AdverQuil – an efficient adversarial detection and alleviation technique for black-box NCS. AdverQuil can identify the adversarial strength of input examples and select the best strategy for NCS to respond to the attack, without changing structure/parameter of the original neural network or its training method. Experimental results show that on MNIST and CIFAR-10 datasets, AdverQuil achieves a high efficiency of 79.5 - 167K image/sec/watt. AdverQuil introduces less than 25% of hardware overhead, and can be combined with various adversarial alleviation techniques to provide a flexible trade-off between hardware cost, energy efficiency and classification accuracy. 
    more » « less
  4. The rapidly increasing size of deep-learning models has renewed interest in alternatives to digital-electronic computers as a means to dramatically reduce the energy cost of running state-of-the-art neural networks. Optical matrix-vector multipliers are best suited to performing computations with very large operands, which suggests that large Transformer models could be a good target for them. In this paper, we investigate---through a combination of simulations and experiments on prototype optical hardware---the feasibility and potential energy benefits of running Transformer models on future optical accelerators that perform matrix-vector multiplication. We use simulations, with noise models validated by small-scale optical experiments, to show that optical accelerators for matrix-vector multiplication should be able to accurately run a typical Transformer architecture model for language processing. We demonstrate that optical accelerators can achieve the same (or better) perplexity as digital-electronic processors at 8-bit precision, provided that the optical hardware uses sufficiently many photons per inference, which translates directly to a requirement on optical energy per inference. We studied numerically how the requirement on optical energy per inference changes as a function of the Transformer width $$d$$ and found that the optical energy per multiply--accumulate (MAC) scales approximately as $$\frac{1}{d}$$, giving an asymptotic advantage over digital systems. We also analyze the total system energy costs for optical accelerators running Transformers, including both optical and electronic costs, as a function of model size. We predict that well-engineered, large-scale optical hardware should be able to achieve a $$100 \times$$ energy-efficiency advantage over current digital-electronic processors in running some of the largest current Transformer models, and if both the models and the optical hardware are scaled to the quadrillion-parameter regime, optical accelerators could have a $$>8,000\times$$ energy-efficiency advantage. Under plausible assumptions about future improvements to electronics and Transformer quantization techniques (5× cheaper memory access, double the digital--analog conversion efficiency, and 4-bit precision), we estimate that the energy advantage for optical processors versus electronic processors operating at 300~fJ/MAC could grow to $$>100,000\times$$. 
    more » « less
  5. With the ever-increasing hardware design complexity comes the realization that efforts required for hardware verification increase at an even faster rate. Driven by the push from the desired verification productivity boost and the pull from leap-ahead capabilities of machine learning (ML), recent years have witnessed the emergence of exploiting ML-based techniques to improve the efficiency of hardware verification. In this article, we present a panoramic view of how ML-based techniques are embraced in hardware design verification, from formal verification to simulation-based verification, from academia to industry, and from current progress to future prospects. We envision that the adoption of ML-based techniques will pave the road for more scalable, more intelligent, and more productive hardware verification. 
    more » « less