skip to main content


Title: Anisotropy links cell shapes to tissue flow during convergent extension

Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extendingDrosophilagermband epithelium, which displays planar-polarized myosin II and experiences anisotropic forces from neighboring tissues. We show that, in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues, two experimentally accessible metrics of cell patterns—the cell shape index and a cell alignment index—are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in theDrosophilagermband predict the onset of rapid cell rearrangement in both wild-type andsnail twistmutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue-shape changes during rapid developmental events.

 
more » « less
Award ID(s):
1751841 1757749
NSF-PAR ID:
10156956
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
24
ISSN:
0027-8424
Page Range / eLocation ID:
p. 13541-13551
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Epithelial tissues adapt their form and function following mechanical perturbations, or mechano-adapt, and these changes often result in reactive forces that oppose the direction of the applied change. Tissues subjected to ectopic tensions, for example, employ behaviors that lower tension, such as increasing proliferation or actomyosin turnover. This oppositional behavior suggests that the tissue has a mechanical homeostasis. Whether attributed to maintenance of cellular area, cell density, or cell and tissue tensions, epithelial mechanical homeostasis has been implicated in coordinating embryonic morphogenesis, wound healing, and maintenance of adult tissues. Despite advances toward understanding the feedback between mechanical state and tissue response in epithelia, more work remains to be done to examine how tissues regulate mechanical homeostasis using epithelial sheets with defined micropatterned shapes. Here, we used cellular microbiaxial stretching (CμBS) to investigate mechano-adaptation in micropatterned tissues of different shape consisting of Madin–Darby canine kidney cells. Using the CμBS platform, tissues were subjected to a 30% stretch that was held for 24 h. We found that, following stretch, tissue stresses immediately increased then slowly evolved over time, approaching their pre-stretch values by 24 h. Organization of the actin cytoskeletal was found to play a role in this process: anisotropic ally structured tissues exhibited anisotropic stress patterns, and the cytoskeletal became more aligned following stretch and reorganized over time. Interestingly, in unstretched tissues, stresses also decreased, which was found to be driven by proliferation-induced cellular confinement and change in tissue thickness. We modeled these behaviors with a continuum-based model of epithelial growth that accounted for stress-induced actin remodeling and proliferation, and found this model to strongly capture experimental behavior. Ultimately, this combined experimental-modeling approach suggests that epithelial mechano-adaptation depends on cellular architecture and proliferation, which can be modeled with a field-averaged approach applicable to more specific contexts in which change is driven by epithelial mechanical homeostasis.

    Insight box Epithelial tissues adapt their form and function following mechanical perturbation, and it is thought that this ‘mechano-adaptation’ plays an important role in driving processes like embryonic morphogenesis, wound healing, and adult tissue maintenance. Here, we use cellular microbiaxial stretching to probe this process in vitro in small epithelial tissues whose geometries were both controlled and varied. By using a highly precise stretching device and a continuum mechanics modeling framework, we revealed that tissue mechanical state changes following stretch and over time, and that this behavior can be explained by stress-dependent changes in actin fibers and proliferation. Integration of these approaches enabled a systematic approach to empirically and precisely measure these phenomena.

     
    more » « less
  2. Organ architecture is often composed of multiple laminar tissues arranged in concentric layers. During morphogenesis, the initial geometry of visceral organs undergoes a sequence of folding, adopting a complex shape that is vital for function. Genetic signals are known to impact form, yet the dynamic and mechanical interplay of tissue layers giving rise to organs' complex shapes remains elusive. Here, we trace the dynamics and mechanical interactions of a developing visceral organ across tissue layers, from subcellular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live visualization with a novel computational framework for multilayer analysis of evolving complex shapes, we find a dynamic mechanism for organ folding using the embryonic midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ shape, control the emergence of high-frequency calcium pulses. Spatiotemporally patterned calcium pulses trigger muscle contractions via myosin light chain kinase. Muscle contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape change collectively drives a convergent extension pattern. Through tissue incompressibility and initial organ geometry, this in-plane shape change is linked to out-of-plane organ folding. Our analysis follows tissue dynamics during organ shape change in vivo, tracing organ-scale folding to a high-frequency molecular mechanism. These findings offer a mechanical route for gene expression to induce organ shape change: genetic patterning in one layer triggers a physical process in the adjacent layer – revealing post-translational mechanisms that govern shape change. 
    more » « less
  3. Like the morphology of native tissue fiber arrangement (such as skeletal muscle), unidirectional anisotropic scaffolds are highly desired as a means to guide cell behavior in anisotropic tissue engineering. In contrast, contour-like staircases exhibit directional topographical cues and are judged as an inevitable defect of fused deposition modeling (FDM). In this study, we will translate this staircase defect into an effective bioengineering strategy by integrating FDM with surface coating technique (FCT) to investigate the effect of topographical cues on regulating behaviors of human mesenchymal stem cells (hMSCs) toward skeletal muscle tissues. This integrated approach serves to fabricate shape-specific, multiple dimensional, anisotropic scaffolds using different biomaterials. 2D anisotropic scaffolds, first demonstrated with different polycaprolactone concentrations herein, efficiently direct hMSC alignment, especially when the scaffold is immobilized on a support ring. By surface coating the polymer solution inside FDM-printed sacrificial structures, 3D anisotropic scaffolds with thin wall features are developed and used to regulate seeded hMSCs through a self-established rotating bioreactor. Using layer-by-layer coating, along with a shape memory polymer, smart constructs exhibiting shape fix and recovery processes are prepared, bringing this study into the realm of 4D printing. Immunofluorescence staining and real-time quantitative polymerase chain reaction analysis confirm that the topographical cues created via FCT significantly enhance the expression of myogenic genes, including myoblast differentiation protein-1, desmin, and myosin heavy chain-2. We conclude that there are broad application potentials for this FCT strategy in tissue engineering as many tissues and organs, including skeletal muscle, possess highly organized and anisotropic extracellular matrix components. 
    more » « less
  4. Umulis, David (Ed.)
    The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development. 
    more » « less
  5. null (Ed.)
    A monolayer of highly motile cells can establish long-range orientational order, which can be explained by hydrodynamic theory of active gels and fluids. However, it is less clear how cell shape changes and rearrangement are governed when the monolayer is in mechanical equilibrium states when cell motility diminishes. In this work, we report that rat embryonic fibroblasts (REF), when confined in circular mesoscale patterns on rigid substrates, can transition from the spindle shapes to more compact morphologies. Cells align radially only at the pattern boundary when they are in the mechanical equilibrium. This radial alignment disappears when cell contractility or cell-cell adhesion is reduced. Unlike monolayers of spindle-like cells such as NIH-3T3 fibroblasts with minimal intercellular interactions or epithelial cells like Madin-Darby canine kidney (MDCK) with strong cortical actin network, confined REF monolayers present an actin gradient with isotropic meshwork, suggesting the existence of a stiffness gradient. In addition, the REF cells tend to condense on soft substrates, a collective cell behavior we refer to as the ‘condensation tendency’. This condensation tendency, together with geometrical confinement, induces tensile prestretch (i.e. an isotropic stretch that causes tissue to contract when released) to the confined monolayer. By developing a Voronoi-cell model, we demonstrate that the combined global tissue prestretch and cell stiffness differential between the inner and boundary cells can sufficiently define the cell radial alignment at the pattern boundary. 
    more » « less