skip to main content


Title: The Age of Information in Networks: Moments, Distributions, and Sampling
A source provides status updates to monitors through a network with state defined by a continuous-time finite Markov chain. An age of information (AoI) metric is used to characterize timeliness by the vector of ages tracked by the monitors. Based on a stochastic hybrid systems (SHS) approach, first order linear differential equations are derived for the temporal evolution of both the moments and the moment generating function (MGF) of the age vector components. It is shown that the existence of a non-negative fixed point for the first moment is sufficient to guarantee convergence of all higher order moments as well as a region of convergence for the stationary MGF vector of the age. The stationary MGF vector is then found for the age on a line network of preemptive memoryless servers. From this MGF, it is found that the age at a node is identical in distribution to the sum of independent exponential service times. This observation is then generalized to linear status sampling networks in which each node receives samples of the update process at each preceding node according to a renewal point process. For each node in the line, the age is shown to be identical in distribution to a sum of independent renewal process age random variables.  more » « less
Award ID(s):
1717041
NSF-PAR ID:
10157009
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Transactions on Information Theory
ISSN:
0018-9448
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The notion of timely status updating is investigated in the context of cloud computing. Measurements of a time-varying process of interest are acquired by a sensor node, and uploaded to a cloud server to undergo some required computations. These computations have random service times that are independent and identically distributed across different uploads. After the computations are done, the results are delivered to a monitor, constituting an update. The goal is to keep the monitor continuously fed with fresh updates over time, which is assessed by an age-of-information(AoI) metric. A scheduler is employed to optimize the measurement acquisition times. Following an update, an idle waiting period may be imposed by the scheduler before acquiring a new measurement. The scheduler also has the capability to preempt a measurement in progress if its service time grows above a certain cutoff time, and upload a fresher measurement in its place. Focusing on stationary deterministic policies, in which waiting times are deterministic functions of the instantaneous AoI and the cutoff time is fixed for all uploads, it is shown that the optimal waiting policy that minimizes the long term average AoI has a threshold structure, in which a new measurement is uploaded following an update only if the AoI grows above a certain threshold that is a function of the service time distribution and the cutoff time. The optimal cutoff is then found for standard and shifted exponential service times. While it has been previously reported that waiting before updating can be beneficial for AoI, it is shown in this work that preemption of late updates can be even more beneficial. 
    more » « less
  2. A source node updates its status as a point process and also forwards its updates to a network of observer nodes. Within the network of observers, these updates are forwarded as point processes from node to node. Each node wishes its knowledge of the source to be as timely as possible. In this network, timeliness is measured by a discrete form of age of information: each status change at the source is referred to as a version and the age at a node is how many versions out of date is its most recent update from the source. This work introduces a method for evaluating the average version age at each node in the network when nodes forward updates using a memoryless gossip protocol. This method is then demonstrated by version age analysis for a collection of simple networks. For gossip on a complete graph with symmetric updating rates, it is shown that each node has average age that grows as the logarithm of the network size. 
    more » « less
  3. Given a sequence of random graphs, we address the problem of online monitoring and detection of changes in the underlying data distribution. To this end, we adopt the Random Dot Product Graph (RDPG) model which postulates each node has an associated latent vector, and inner products between these vectors dictate the edge formation probabilities. Existing approaches for graph change-point detection (CPD) rely either on extensive computation, or they store and process the entire observed time series. In this paper we consider the cumulative sum of a judicious monitoring function, which quantifies the discrepancy between the streaming graph observations and the nominal model. This reference distribution is inferred via spectral embeddings of the first few graphs in the sequence, and the monitoring function can be updated in an efficient, online fashion. We characterize the distribution of this running statistic, allowing us to select appropriate thresholding parameters that guarantee error-rate control. The end result is a lightweight online CPD algorithm, with a proven capability to flag distribution shifts in the arriving graphs. The novel method is tested on both synthetic and real network data, corroborating its effectiveness in quickly detecting changes in the input graph sequence. 
    more » « less
  4. We consider the setting where the nodes in an undirected, connected network collaborate to solve a shared objective modeled as the sum of smooth functions. We assume that each summand is privately known by a unique node. NEAR-DGD is a distributed first order method which permits adjusting the amount of communication between nodes relative to the amount of computation performed locally in order to balance convergence accuracy and total application cost. In this work, we generalize the convergence properties of a variant of NEAR-DGD from the strongly convex to the nonconvex case. Under mild assumptions, we show convergence to minimizers of a custom Lyapunov function. Moreover, we demonstrate that the gap between those minimizers and the second order stationary solutions of the original problem can become arbitrarily small depending on the choice of algorithm parameters. Finally, we accompany our theoretical analysis with a numerical experiment to evaluate the empirical performance of NEAR-DGD in the nonconvex setting. 
    more » « less
  5. Abstract Using a result of Blanchet and Wallwater (2015) for exactly simulating the maximum of a negative drift random walk queue endowed with independent and identically distributed (i.i.d.) increments, we extend it to a multi-dimensional setting and then we give a new algorithm for simulating exactly the stationary distribution of a first-in–first-out (FIFO) multi-server queue in which the arrival process is a general renewal process and the service times are i.i.d.: the FIFO GI/GI/ c queue with $ 2 \leq c \lt \infty$ . Our method utilizes dominated coupling from the past (DCFP) as well as the random assignment (RA) discipline, and complements the earlier work in which Poisson arrivals were assumed, such as the recent work of Connor and Kendall (2015). We also consider the models in continuous time, and show that with mild further assumptions, the exact simulation of those stationary distributions can also be achieved. We also give, using our FIFO algorithm, a new exact simulation algorithm for the stationary distribution of the infinite server case, the GI/GI/ $\infty$ model. Finally, we even show how to handle fork–join queues, in which each arriving customer brings c jobs, one for each server. 
    more » « less