skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eocene “Chusquea” fossil from Patagonia is a conifer, not a bamboo
Chusquea oxyphylla Freng. & Parodi, 1941, a fossilized leafy branch from the early Eocene (52 Ma), late-Gondwanan Laguna del Hunco biota of southern Argentina, is still cited as the oldest potential bamboo fossil and as evidence for a Gondwanan origin of bamboos. On recent examination, the holotype specimen was found to lack any typical bamboo characters such as nodes, sheaths, ligules, pseudopetioles, or parallel leaf venation. Instead, it has decurrent, clasping, univeined, heterofacially twisted leaves with thickened, central-longitudinal bands of presumed transfusion tissue. These and other features allow confident placement in the living Neotropical and West Pacific disjunct genus Retrophyllum (Podocarpaceae), which was recently described from the same fossil site based on abundant, well-preserved material. However, the 1941 fossil holds nomenclatural priority, requiring the new combination Retrophyllum oxyphyllum (Freng. & Parodi) Wilf, comb. nov. No reliable bamboo fossils remain from Gondwana, and the oldest South American bamboo fossils are Pliocene. Chusquea joins a growing list of living New World genera that are no longer included in Paleogene Patagonian floras, whose extant relatives are primarily concentrated in Australasia and Malesia via the ancient Gondwanan route through Antarctica.  more » « less
Award ID(s):
1925755 1556666
PAR ID:
10157066
Author(s) / Creator(s):
Date Published:
Journal Name:
PhytoKeys
Volume:
139
ISSN:
1314-2011
Page Range / eLocation ID:
77 to 89
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseAraliaceae comprise a moderately diverse, predominantly tropical angiosperm family with a limited fossil record. Gondwanan history of Araliaceae is hypothesized in the literature, but no fossils have previously been reported from the former supercontinent. MethodsI describe large (to macrophyll size), palmately compound‐lobed leaf fossils and an isolated umbellate infructescence from the early Eocene (52 Ma), late‐Gondwanan paleorainforest flora at Laguna del Hunco in Argentine Patagonia. ResultsThe leaf fossils are assigned to Caffapanax canessae gen. et sp. nov. (Araliaceae). Comparable living species belong to five genera that are primarily distributed from Malesia to South China. The most similar genus is Osmoxylon, which is centered in east Malesia and includes numerous threatened species. The infructescence is assigned to Davidsaralia christophae gen. et sp. nov. (Araliaceae) and is also comparable to Osmoxylon. ConclusionsThe Caffapanax leaves and Davidsaralia infructescence, potentially representing the same source taxon, are the oldest araliaceous macrofossils and provide direct evidence of Gondwanan history in the family. The new fossils and their large leaves enrich the well‐established biogeographic and climatic affinities of the fossil assemblage with imperiled Indo‐Pacific, everwet tropical rainforests. The fossils most likely represent shrubs or small trees, adding to the rich record of understory vegetation recovered from Laguna del Hunco. 
    more » « less
  2. Abstract Many plant genera in the tropical West Pacific are survivors from the paleo-rainforests of Gondwana. For example, the oldest fossils of the Malesian and Australasian coniferAgathis(Araucariaceae) come from the early Paleocene and possibly latest Cretaceous of Patagonia, Argentina (West Gondwana). However, it is unknown whether dependent ecological guilds or lineages of associated insects and fungi persisted on Gondwanan host plants likeAgathisthrough time and space. We report insect-feeding and fungal damage on PatagonianAgathisfossils from four latest Cretaceous to middle Eocene floras spanning ca. 18 Myr and compare it with damage on extantAgathis. Very similar damage was found on fossil and modernAgathis, including blotch mines representing the first known Cretaceous–Paleogene boundary crossing leaf-mine association, external foliage feeding, galls, possible armored scale insect (Diaspididae) covers, and a rust fungus (Pucciniales). The similar suite of damage, unique to fossil and extantAgathis, suggests persistence of ecological guilds and possibly the component communities associated withAgathissince the late Mesozoic, implying host tracking of the genus across major plate movements that led to survival at great distances. The living associations, mostly made by still-unknown culprits, point to previously unrecognized biodiversity and evolutionary history in threatened rainforest ecosystems. 
    more » « less
  3. Abstract Premise The spurge family Euphorbiaceae is prominent in tropical rainforests worldwide, particularly in Asia. There is little consensus on the biogeographic origins of the family or its principal lineages. No confirmed spurge macrofossils have come from Gondwana. Methods We describe the first Gondwanan macrofossils of Euphorbiaceae, represented by two infructescences and associated peltate leaves from the early Eocene (52 Myr ago [Ma]) Laguna del Hunco site in Chubut, Argentina. Results The infructescences are panicles bearing tiny, pedicellate, spineless capsular fruits with two locules, two axile lenticular seeds, and two unbranched, plumose stigmas. The fossils' character combination only occurs today in some species of the Macaranga-Mallotus clade (MMC; Euphorbiaceae), a widespread Old-World understory group often thought to have tropical Asian origins. The associated leaves are consistent with extant Macaranga. Conclusions The new fossils are the oldest known for the MMC, demonstrating its Gondwanan history and marking its divergence by at least 52 Ma. This discovery makes an Asian origin of the MMC unlikely because immense oceanic distances separated Asia and South America 52 Ma. The only other MMC reproductive fossils so far known are also from the southern hemisphere (early Miocene, southern New Zealand), far from the Asian tropics. The MMC, along with many other Gondwanan survivors, most likely entered Asia during the Neogene Sahul-Sunda collision. Our discovery adds to a substantial series of well-dated, well-preserved fossils from one undersampled region, Patagonia, that have changed our understanding of plant biogeographic history. 
    more » « less
  4. Summary Cunoniaceae are important elements of rainforests across the Southern Hemisphere. Many of these flowering plants are considered Paleo‐Antarctic Rainforest Lineages that had a Gondwanan distribution since the Paleocene. Fossils of several modern genera within the family, such asCeratopetalum, have indicated biogeographical connections between South America and Australia in the Cenozoic.Here, we report a dramatic geographical range extension forCeratopetalum, and Cunoniaceae as a whole, based on two exceptionally preserved fossil winged fruits from Campanian (c. 82–80 Ma old) deposits on Sucia Island, Washington, USA. The fossils were studied using physical sectioning, light microscopy, micro‐computed tomography scanning and multiple phylogenetic analyses.The fossil fruits share diagnostic characters withCeratopetalumsuch as the presence of four to five persistent calyx lobes, a prominent nectary disk, persistent stamens, a semi‐inferior ovary and two persistent styles. Based on morphological comparisons with fruits of extant species and support from phylogenetic analyses, the fossils are assigned to a new speciesCeratopetalum suciensis.These fossils are the first unequivocal evidence of crown Cunoniaceae from the Cretaceous of North America, indicating a more complicated biogeographical history for this important Gondwanan family. 
    more » « less
  5. Premise of research. The Neogene collision of the Australian tectonic plate (Sahul) with Southeast Asia (Sunda) restructured the vegetation of both regions. The rarity of plant macrofossils from Sunda has limited the understanding of precollision vegetation and plants that migrated from Sunda to Sahul. Despite the importance of legumes in the living flora, no Malesian reproductive or pre-Neogene fossils of the Fabaceae are known.Methodology. We collected 47 plant macrofossils from the Tambak Member of the Tanjung Formation (middle-late Eocene) while surveying the Wahana Baratama coal mine near Satui, South Kalimantan, Indonesian Borneo. These fossils represent Southeast Asian forests before the Sahul-Sunda collision. We studied three isolated large (up to 72 mm in length) seeds from the upper Tambak Member, along with 43 fossil leaves and two palynological samples from the lower Tambak Member.Pivotal results. We describe the extinct legume Jantungspermum gunnellii gen. et sp. nov. The J. gunnellii seeds are flattened on one side, bilobed, and heart shaped with a long hilum (~60 mm) overlain on the suture, closely resembling Castanospermum, the Australian black bean tree. The leaves represent seven morphotypes, which include Fabaceae but are otherwise unidentifiable. One specimen preserves in situ cuticle. The palynoflora includes diverse ferns and palms, Typhaceae, Onagraceae, and forest taxa, including Podocarpaceae, Sapindaceae, and Fabaceae, indicating a largely freshwater coastal swamp environment in the lower Tambak Member.Conclusions. The Jantungspermum seeds are double the length of Castanospermum seeds, representing a closely related but extinct papilionoid taxon. The discovery suggests a Sundan precollision history, a much later Sunda-Sahul migration, and an eventual Asian extinction for the Castanospermum lineage, which today inhabits coastal rainforests of northern Australasia. The seeds represent the only known fossil relative of Castanospermum, the oldest legume fossils from Malesia, and one of the largest fossil angiosperm seeds. The new seeds, leaves, and palynomorphs provide a window into Eocene Malesian vegetation and rare macrofossil evidence of Sundan history for a living Australasian lineage. 
    more » « less