skip to main content

Search for: All records

Award ID contains: 1925755

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background

    In extant ecosystems, complex networks of ecological interactions between organisms can be readily studied. In contrast, understanding of such interactions in ecosystems of the geologic past is incomplete. Specifically, in past terrestrial ecosystems we know comparatively little about plant biotic interactions besides saprotrophy, herbivory, mycorrhizal associations, and oviposition. Due to taphonomic biases, epiphyte communities are particularly rare in the plant-fossil record, despite their prominence in modern ecosystems. Accordingly, little is known about how terrestrial epiphyte communities have changed across geologic time. Here, we describe a tinyin situfossil epiphyte community that sheds light on plant-animal and plant-plant interactions more than 50 million years ago.


    A single silicifiedTodea(Osmundaceae) rhizome from a new locality of the early Eocene (ca. 52 Ma) Tufolitas Laguna del Hunco (Patagonia, Argentina) was studied in serial thin sections using light microscopy. The community of organisms colonizing the tissues of the rhizome was characterized by identifying the organisms and mapping and quantifying their distribution. A 200 × 200 µm grid was superimposed onto the rhizome cross section, and the colonizers present at each node of the grid were tallied.


    Preservedin situ, this community offers a rare window onto aspects of ancient ecosystems usually lost to time and taphonomic processes.more »The community is surprisingly diverse and includes the first fossilized leafy liverworts in South America, also marking the only fossil record of leafy bryophyte epiphytes outside of amber deposits; as well as several types of fungal hyphae and spores; microsclerotia with possible affinities in several ascomycete families; and evidence for oribatid mites.


    The community associated with the Patagonian rhizome enriches our understanding of terrestrial epiphyte communities in the distant past and adds to a growing body of literature on osmundaceous rhizomes as important hosts for component communities in ancient ecosystems, just as they are today. Because osmundaceous rhizomes represent an ecological niche that has remained virtually unchanged over time and space and are abundant in the fossil record, they provide a paleoecological model system that could be used to explore epiphyte community structure through time.

    « less
  2. Abstract

    Many plant genera in the tropical West Pacific are survivors from the paleo-rainforests of Gondwana. For example, the oldest fossils of the Malesian and Australasian coniferAgathis(Araucariaceae) come from the early Paleocene and possibly latest Cretaceous of Patagonia, Argentina (West Gondwana). However, it is unknown whether dependent ecological guilds or lineages of associated insects and fungi persisted on Gondwanan host plants likeAgathisthrough time and space. We report insect-feeding and fungal damage on PatagonianAgathisfossils from four latest Cretaceous to middle Eocene floras spanning ca. 18 Myr and compare it with damage on extantAgathis. Very similar damage was found on fossil and modernAgathis, including blotch mines representing the first known Cretaceous–Paleogene boundary crossing leaf-mine association, external foliage feeding, galls, possible armored scale insect (Diaspididae) covers, and a rust fungus (Pucciniales). The similar suite of damage, unique to fossil and extantAgathis, suggests persistence of ecological guilds and possibly the component communities associated withAgathissince the late Mesozoic, implying host tracking of the genus across major plate movements that led to survival at great distances. The living associations, mostly made by still-unknown culprits, point to previously unrecognized biodiversity and evolutionary history in threatened rainforest ecosystems.

  3. Free, publicly-accessible full text available May 1, 2023
  4. Free, publicly-accessible full text available May 1, 2023
  5. The Malay Archipelago is one of the most biodiverse regions on Earth, but it suffers high extinction risks due to severe anthropogenic pressures. Paleobotanical knowledge provides baselines for the conservation of living analogs and improved understanding of vegetation, biogeography, and paleoenvironments through time. The Malesian bioregion is well studied palynologically, but there have been very few investigations of Cenozoic paleobotany (plant macrofossils) in a century or more. We report the first paleobotanical survey of Brunei Darussalam, a sultanate on the north coast of Borneo that still preserves the majority of its extraordinarily diverse, old-growth tropical rainforests. We discovered abundant compression floras dominated by angiosperm leaves at two sites of probable Pliocene age: Berakas Beach, in the Liang Formation, and Kampong Lugu, in an undescribed stratigraphic unit. Both sites also yielded rich palynofloral assemblages from the macrofossil-bearing beds, indicating lowland fern-dominated swamp (Berakas Beach) and mangrove swamp (Kampong Lugu) depositional environments. Fern spores from at least nine families dominate both palynological assemblages, along with abundant fungal and freshwater algal remains, rare marine microplankton, at least four mangrove genera, and a diverse rainforest tree and liana contribution (at least 19 families) with scarce pollen of Dipterocarpaceae, today’s dominant regional life form. Compressedmore »leaves and rare reproductive material represent influx to the depocenters from the adjacent coastal rainforests. Although only about 40% of specimens preserve informative details, we can distinguish 23 leaf and two reproductive morphotypes among the two sites. Dipterocarps are by far the most abundant group in both compression assemblages, providing rare, localized evidence for dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene. The dipterocarp fossils include winged Shorea fruits, at least two species of plicate Dipterocarpus leaves, and very common Dryobalanops leaves. We attribute additional leaf taxa to Rhamnaceae ( Ziziphus ), Melastomataceae, and Araceae ( Rhaphidophora ), all rare or new fossil records for the region. The dipterocarp leaf dominance contrasts sharply with the family’s <1% representation in the palynofloras from the same strata. This result directly demonstrates that dipterocarp pollen is prone to strong taphonomic filtering and underscores the importance of macrofossils for quantifying the timing of the dipterocarps’ rise to dominance in the region. Our work shows that complex coastal rainforests dominated by dipterocarps, adjacent to swamps and mangroves and otherwise similar to modern ecosystems, have existed in Borneo for at least 4–5 million years. Our findings add historical impetus for the conservation of these gravely imperiled and extremely biodiverse ecosystems.« less
  6. Leaves are the most abundant and visible plant organ, both in the modern world and the fossil record. Identifying foliage to the correct plant family based on leaf architecture is a fundamental botanical skill that is also critical for isolated fossil leaves, which often, especially in the Cenozoic, represent extinct genera and species from extant families. Resources focused on leaf identification are remarkably scarce; however, the situation has improved due to the recent proliferation of digitized herbarium material, live-plant identification applications, and online collections of cleared and fossil leaf images. Nevertheless, the need remains for a specialized image dataset for comparative leaf architecture. We address this gap by assembling an open-access database of 30,252 images of vouchered leaf specimens vetted to family level, primarily of angiosperms, including 26,176 images of cleared and x-rayed leaves representing 354 families and 4,076 of fossil leaves from 48 families. The images maintain original resolution, have user-friendly filenames, and are vetted using APG and modern paleobotanical standards. The cleared and x-rayed leaves include the Jack A. Wolfe and Leo J. Hickey contributions to the National Cleared Leaf Collection and a collection of high-resolution scanned x-ray negatives, housed in the Division of Paleobotany, Department of Paleobiology,more »Smithsonian National Museum of Natural History, Washington D.C.; and the Daniel I. Axelrod Cleared Leaf Collection, housed at the University of California Museum of Paleontology, Berkeley. The fossil images include a sampling of Late Cretaceous to Eocene paleobotanical sites from the Western Hemisphere held at numerous institutions, especially from Florissant Fossil Beds National Monument (late Eocene, Colorado), as well as several other localities from the Late Cretaceous to Eocene of the Western USA and the early Paleogene of Colombia and southern Argentina. The dataset facilitates new research and education opportunities in paleobotany, comparative leaf architecture, systematics, and machine learning.« less
  7. Abstract Here we present the first record of a stem-Coracii outside the Holarctic region, found in the early Eocene of Patagonia at the Laguna del Hunco locality. Ueekenkcoracias tambussiae gen. et sp. nov. consists of an incomplete right hind limb that presents the following combination of characters, characteristic of Coracii: relatively short and stout tibiotarsus, poorly developed crista cnemialis cranialis, short and wide tarsometatarsus, with the tuberositas m. tibialis cranialis located medially on the shaft, and curved and stout ungual phalanges. Although the presence of a rounded and conspicuous foramen vasculare distale and the trochlea metatarsi II strongly deflected medially resemble Primobucconidae, a fossil group only found in the Eocene of Europe and North America, our phylogenetic analysis indicates the new taxon is the basalmost known Coracii. The unexpected presence of a stem-Coracii in the Eocene of South America indicates that this clade had a more widespread distribution than previously hypothesized, already extending into the Southern Hemisphere by the early Eocene. Ueekenkcoracias tambussiae represents new evidence of the increasing diversity of stem lineages of birds in the Eocene. The new material provides novel morphological data for understanding the evolutionary origin and radiation of rollers and important data for estimates ofmore »the divergence time of the group.« less
  8. null (Ed.)
  9. Abstract We discuss a recent assessment by Dörken et al. (2021) regarding the affinities of the Eocene fossil species Huncocladus laubenfelsii from Laguna del Hunco (Patagonia, Argentina). We originally (Andruchow-Colombo et al., 2019) assigned this species to the conifer family Podocarpaceae as the first certain South American macrofossil record of the phyllocladoid lineage (Huncocladus+Phyllocladus), based on a combination of numerous macro- and micromorphological vegetative characters. However, Dörken et al. (2021) rejected the podocarpaceous affinity of H. laubenfelsii and considered it to be more closely related to the cycad genera Bowenia or Eobowenia. Their assessment was based almost entirely on two cuticular characters, with only superficial consideration of the abundant additional evidence available that included several diagnostic macromorphological features. We review the two characters mentioned by these authors, and other features, and find that their suggestion is contradicted by the available evidence, maintaining our original assignment. Critical characters include presence/absence of a midvein, secondary venation pattern, arrangement and general morphology of the photosynthetic structures, and morphology and disposition of epidermal cells.