skip to main content


Title: Selective host–guest chemistry, self-assembly and conformational preferences of m -xylene macrocycles probed by ion-mobility spectrometry mass spectrometry
We demonstrated ion-mobility spectrometry mass spectrometry (IMS-MS) as a powerful tool for interrogating and preserving selective chemistry including non-covalent and host–guest complexes of m -xylene macrocycles formed in solution. The technique readily revealed the unique favorability of a thiourea-containing macrocycle MXT to Zn 2+ to form a dimer complex with the cation in an off-axis sandwich structure having the Zn–S bonds in a tetrahedral coordination environment. Replacing thiourea with urea generates MXU which formed high-order oligomerization with weak binding interactions to neutral DMSO guests detected at every oligomer size. The self-assembly pathway observed for this macrocycle is consistent with the crystalline assembly. Further transformation of urea into squaramide produces MXS, a rare receptor for probing sulfate in solution. Tight complexes were observed for both monomeric and dimeric of MXS in which HSO 4 − bound stronger than SO 4 2− to the host. The position of HSO 4 − at the binding cavity is a 180° inversion of the reported crystallographic SO 4 2− . The MXS dimer formed a prism-like shape with HSO 4 − exhibiting strong contacts with the 8 amine protons of two MXS macrocycles. By eliminating intermolecular interferences, we detected the low energy structures of MXS with collisional cross section (CCS) matching cis – trans and cis – cis squaramides-amines, both were not observed in crystallization trials. The experiments collectively unravel multiple facets of macrocycle chemistry including conformational flexibility, self-assembly and ligand binding; all in one analysis. Our findings illustrate an inexpensive and widely applicable approach to investigate weak but important interactions that define the shape and binding of macrocycles.  more » « less
Award ID(s):
1904386
NSF-PAR ID:
10157072
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
17
ISSN:
1463-9076
Page Range / eLocation ID:
9290 to 9300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    Coordinatively driven self‐assembly of transition metal ions and bidentate ligands gives rise to organometallic complexes that usually contain superimposed isobars, isomers, and conformers. In this study, the double dispersion ability of ion mobility mass spectrometry (IM‐MS) was used to provide a comprehensive structural characterization of the self‐assembled supramolecular complexes by their mass and charge, revealed by the MS event, and their shape and collision cross‐section (Ω), revealed by the IM event.

    Methods

    Self‐assembled complexes were synthesized by reacting a bis(terpyridine) ligand exhibiting a 60odihedral angle between the two ligating terpyridine sites (T) with divalent Zn, Ni, Cd, or Fe. The products were isolated as (Metal2+[T])n(PF6)2nsalts and analyzed using IM‐MS after electrospray ionization (ESI) which produced several charge states from eachn‐mer, depending on the number of PF6ˉ anions lost upon ESI. Experimental Ω data, derived using IM‐MS, and computational Ω predictions were used to elucidate the size and architecture of the complexes.

    Results

    Only macrocyclic dimers, trimers, and tetramers were observed with Cd2+, whereas Zn2+formed the same plus hexameric complexes. These two metals led to the simplest product distributions and no linear isomers. In sharp contrast, Ni2+and Fe2+formed all possible ring sizes from dimer to hexamer as well as various linear isomers. The experimental and theoretical Ω data indicated rather planar macrocyclic geometries for the dimers and trimers, twisted 3D architectures for the larger rings, and substantially larger sizes with spiral conformation for the linear congeners. Adding PF6ˉ to the same complex was found to mainly cause size contraction due to new stabilizing anion–cation interactions.

    Conclusions

    Complete structural identification could be accomplished using ESI‐IM‐MS. Our results affirm that self‐assembly with Cd2+and Zn2+proceeds through reversible equilibria that generate the thermodynamically most stable structures, encompassing exclusively macrocyclic architectures that readily accommodate the 60oligand used. In contrast, complexation with Ni2+and Fe2+, which form stronger coordinative bonds, proceeds through kinetic control, leading to more complex mixtures and kinetically trapped less stable architectures, such as macrocyclic pentamers and linear isomers.

     
    more » « less
  2. Abstract

    Cooperativity plays a critical role in self‐assembly and molecular recognition. A rigid aromatic oligoamide macrocycle with a cyclodirectional backbone binds with DABCO‐based cationic guests in a 2 : 1 ratio in high affinities (Ktotal≈1013 M−2) in the highly polar DMF. The host–guest binding also exhibits exceptionally strong positive cooperativity quantified by interaction factors α that are among the largest for synthetic host–guest systems. The unusually strong positive cooperativity, revealed by isothermal titration calorimetry (ITC) and fully corroborated by mass spectrometry, NMR and computational studies, is driven by guest‐induced stacking of the macrocycles and stabilization from the alkyl end chains of the guests, interactions that appear upon binding the second macrocycle. With its tight binding driven by extraordinary positive cooperativity, this host–guest system provides a tunable platform for studying molecular interactions and for constructing stable supramolecular assemblies.

     
    more » « less
  3. Abstract

    Cooperativity plays a critical role in self‐assembly and molecular recognition. A rigid aromatic oligoamide macrocycle with a cyclodirectional backbone binds with DABCO‐based cationic guests in a 2 : 1 ratio in high affinities (Ktotal≈1013 M−2) in the highly polar DMF. The host–guest binding also exhibits exceptionally strong positive cooperativity quantified by interaction factors α that are among the largest for synthetic host–guest systems. The unusually strong positive cooperativity, revealed by isothermal titration calorimetry (ITC) and fully corroborated by mass spectrometry, NMR and computational studies, is driven by guest‐induced stacking of the macrocycles and stabilization from the alkyl end chains of the guests, interactions that appear upon binding the second macrocycle. With its tight binding driven by extraordinary positive cooperativity, this host–guest system provides a tunable platform for studying molecular interactions and for constructing stable supramolecular assemblies.

     
    more » « less
  4. Abstract

    We report on a dendronized bis‐urea macrocycle1self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development.

     
    more » « less
  5. Abstract

    We report on a dendronized bis‐urea macrocycle1self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development.

     
    more » « less