skip to main content


Title: Efficient Structural Clustering in Large Uncertain Graphs
Clustering uncertain graphs based on the probabilisticgraph model has sparked extensive research and widely varying applications. Existing structural clustering methods rely heavily on the computation of pairwise reliable structural similarity between vertices, which has proven to be extremely costly, especially in large uncertain graphs. In this paper, we develop a new, decomposition-based method, ProbSCAN, for efficient reliable structural similarity computation with theoretically improved complexity. We further design a cost-effective index structure UCNO-Index, and a series of powerful pruning strategies to expedite reliable structural similarity computation in uncertain graphs. Experimental studies on eight real-world uncertain graphs demonstrate the effectiveness of our proposed solutions, which achieves orders of magnitude improvement of clustering efficiency, compared with the state-of-the-art structural clustering methods in large uncertain graphs.  more » « less
Award ID(s):
1743142
PAR ID:
10157172
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE 36th International Conference on Data Engineering (ICDE)
Page Range / eLocation ID:
1966 to 1969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider in this paper the similarity search problem that retrieves relevant graphs from a graph database under the well-known graph edit distance (GED) constraint. Formally, given a graph database G = {g1, g2, . . . , gn} and a query graph q, we aim to search the graph gi ∈ g such that the graph edit distance between gi and q, GED(gi, q), is within a user-specified GED threshold, τ. In spite of its theoretical significance and wide applicability, the GED-based similarity search problem is challenging in large graph databases due in particular to a large amount of GED computation incurred, which has proven to be NP-hard. In this paper, we propose a parameterized, partition-based GED lower bound that can be instantiated into a series of tight lower bounds towards synergistically pruning false-positive graphs from before costly GED computation is performed. We design an efficient, selectivity-aware algorithm to partition graphs of into highly selective subgraphs. They are further incorporated in a cost-effective, multi-layered indexing structure, ML-Index (Multi-Layered Index), for GED lower bound cross-checking and false-positive graph filtering with theoretical performance guarantees. Experimental studies in real and synthetic graph databases validate the efficiency and effectiveness of ML-Index, which achieves up to an order of magnitude speedup over the state-of-the-art method for similarity search in graph databases. 
    more » « less
  2. Computing similarity between graphs is a fundamental and critical problem in graph-based applications, and one of the most commonly used graph similarity measures is graph edit distance (GED), defined as the minimum number of graph edit operations that transform one graph to another. Existing GED solutions suffer from severe performance issues due in particular to the NP-hardness of exact GED computation. Recently, deep learning has shown early promise for GED approximation with high accuracy and low computational cost. However, existing methods treat GED as a global, coarse-grained graph similarity value, while neglecting the type-specific transformative impacts incurred by different types of graph edit operations, including node insertion/deletion, node relabeling, edge insertion/deletion, and edge relabeling. In this paper, we propose a type-aware graph similarity learning and computation framework, TaGSim (T ype -a ware G raph Sim ilarity), that estimates GED in a fine-grained approach w.r.t. different graph edit types. Specifically, for each type of graph edit operations, TaGSim models its unique transformative impacts upon graphs, and encodes them into high-quality, type-aware graph embeddings, which are further fed into type-aware neural networks for accurate GED estimation. Extensive experiments on five real-world datasets demonstrate the effectiveness and efficiency of TaGSim, which significantly outperforms state-of-the-art GED solutions. 
    more » « less
  3. Clustering algorithms are often evaluated using metrics which compare with ground-truth cluster assignments, such as Rand index and NMI. Algorithm performance may vary widely for different hyperparameters, however, and thus model selection based on optimal performance for these metrics is discordant with how these algorithms are applied in practice, where labels are unavailable and tuning is often more art than science. It is therefore desirable to compare clustering algorithms not only on their optimally tuned performance, but also some notion of how realistic it would be to obtain this performance in practice. We propose an evaluation of clustering methods capturing this ease-of-tuning by modeling the expected best clustering score under a given computation budget. To encourage the adoption of the proposed metric alongside classic clustering evaluations, we provide an extensible benchmarking framework. We perform an extensive empirical evaluation of our proposed metric on popular clustering algorithms over a large collection of datasets from different domains, and observe that our new metric leads to several noteworthy observations. 
    more » « less
  4. Abstract

    With the aim of analyzing large-sized multidimensional single-cell datasets, we are describing a method for Cosine-based Tanimoto similarity-refined graph for community detection using Leiden’s algorithm (CosTaL). As a graph-based clustering method, CosTaL transforms the cells with high-dimensional features into a weighted k-nearest-neighbor (kNN) graph. The cells are represented by the vertices of the graph, while an edge between two vertices in the graph represents the close relatedness between the two cells. Specifically, CosTaL builds an exact kNN graph using cosine similarity and uses the Tanimoto coefficient as the refining strategy to re-weight the edges in order to improve the effectiveness of clustering. We demonstrate that CosTaL generally achieves equivalent or higher effectiveness scores on seven benchmark cytometry datasets and six single-cell RNA-sequencing datasets using six different evaluation metrics, compared with other state-of-the-art graph-based clustering methods, including PhenoGraph, Scanpy and PARC. As indicated by the combined evaluation metrics, Costal has high efficiency with small datasets and acceptable scalability for large datasets, which is beneficial for large-scale analysis.

     
    more » « less
  5. Link prediction is one of the fundamental problems in social network analysis. A common set of techniques for link prediction rely on similarity metrics which use the topology of the observed subnetwork to quantify the likelihood of unobserved links. Recently, similarity metrics for link prediction have been shown to be vulnerable to attacks whereby observations about the network are adversarially modified to hide target links. We propose a novel approach for increasing robustness of similarity-based link prediction by endowing the analyst with a restricted set of reliable queries which accurately measure the existence of queried links. The analyst aims to robustly predict a collection of possible links by optimally allocating the reliable queries. We formalize the analyst problem as a Bayesian Stackelberg game in which they first choose the reliable queries, followed by an adversary who deletes a subset of links among the remaining (unreliable) queries by the analyst. The analyst in our model is uncertain about the particular target link the adversary attempts to hide, whereas the adversary has full information about the analyst and the network. Focusing on similarity metrics using only local information, we show that the problem is NP-Hard for both players, and devise two principled and efficient approaches for solving it approximately. Extensive experiments with real and synthetic networks demonstrate the effectiveness of our approach. 
    more » « less