Deep learning models have been used in creating various effective image classification applications. However, they are vulnerable to adversarial attacks that seek to misguide the models into predicting incorrect classes. Our study of major adversarial attack models shows that they all specifically target and exploit the neural networking structures in their designs. This understanding led us to develop a hypothesis that most classical machine learning models, such as random forest (RF), are immune to adversarial attack models because they do not rely on neural network design at all. Our experimental study of classical machine learning models against popular adversarial attacks supports this hypothesis. Based on this hypothesis, we propose a new adversarial-aware deep learning system by using a classical machine learning model as the secondary verification system to complement the primary deep learning model in image classification. Although the secondary classical machine learning model has less accurate output, it is only used for verification purposes, which does not impact the output accuracy of the primary deep learning model, and, at the same time, can effectively detect an adversarial attack when a clear mismatch occurs. Our experiments based on the CIFAR-100 dataset show that our proposed approach outperforms current state-of-the-art adversarial defense systems.
more »
« less
A Neuromorphic Sparse Coding Defense to Adversarial Images
Adversarial images are a class of images that have been slightly altered by very specific noise to change the way a deep learning neural network classifies the image. In many cases, this particular noise is imperceptible to the human vision system and thus presents a vulnerability of significant concern to the machine learning and artificial intelligence community. Research towards mitigating this type of attack has taken many forms, one of which is to filter or post process the image before classifying the image with a deep neural network. Techniques such as smoothing, filtering, and compression have been used with varying levels of success. In our work, we explored the use of a neuromorphic software and hardware approach as a protection against adversarial image attack. The algorithm governing our neuromorphic approach is based upon sparse coding. Our sparse coding approach is solved using a dynamic system of equations that models biological low level vision. Our quantitative and qualitative results show that a sparse coding reconstruction is remarkably invariant to changes in sparsity and reconstruction error with respect to classification accuracy. Furthermore, our approach is able to maintain low reconstruction errors without sacrificing classification performance.
more »
« less
- PAR ID:
- 10157187
- Date Published:
- Journal Name:
- ICONS '19: Proceedings of the International Conference on Neuromorphic Systems
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neural models enjoy widespread use across a variety of tasks and have grown to become crucial components of many industrial systems. Despite their effectiveness and ex- tensive popularity, they are not without their exploitable flaws. Initially applied to computer vision systems, the generation of adversarial examples is a process in which seemingly imper- ceptible perturbations are made to an image, with the purpose of inducing a deep learning based classifier to misclassify the image. Due to recent trends in speech processing, this has become a noticeable issue in speech recognition models. In late 2017, an attack was shown to be quite effective against the Speech Commands classification model. Limited-vocabulary speech classifiers, such as the Speech Commands model, are used quite frequently in a variety of applications, particularly in managing automated attendants in telephony contexts. As such, adversarial examples produced by this attack could have real-world consequences. While previous work in defending against these adversarial examples has investigated using audio preprocessing to reduce or distort adversarial noise, this work explores the idea of flooding particular frequency bands of an audio signal with random noise in order to detect adversarial examples. This technique of flooding, which does not require retraining or modifying the model, is inspired by work done in computer vision and builds on the idea that speech classifiers are relatively robust to natural noise. A combined defense incorporating 5 different frequency bands for flooding the signal with noise outperformed other existing defenses in the audio space, detecting adversarial examples with 91.8% precision and 93.5% recall.more » « less
-
Plant disease is one of many obstacles encountered in the field of agriculture. Machine learning models have been used to classify and detect diseases among plants by analyzing and extracting features from plant images. However, a common problem for many models is that they are trained on clean laboratory images and do not exemplify real conditions where noise can be present. In addition, the emergence of adversarial noise that can mislead models into wrong predictions poses a severe challenge to developing preserved models against noisy environments. In this paper, we propose an end-to-end robust plant disease detection framework that combines a DenseNet-based classification with a vigorous deep learning denoising model. We validate a variety of deep learning denoising models and adopt the Real Image Denoising network (RIDnet). The experiments have shown that the proposed denoising classification framework for plant disease detection is more robust against noisy or corrupted input images compared to a single classification model and can also successfully defend against adversarial noises in images.more » « less
-
Image stitching involves combining multiple images of the same scene captured from different viewpoints into a single image with an expanded field of view. While this technique has various applications in computer vision, traditional methods rely on the successive stitching of image pairs taken from multiple cameras. While this approach is effective for organized camera arrays, it can pose challenges for unstructured ones, especially when handling scene overlaps. This paper presents a deep learning-based approach for stitching images from large unstructured camera sets covering complex scenes. Our method processes images concurrently by using the SandFall algorithm to transform data from multiple cameras into a reduced fixed array, thereby minimizing data loss. A customized convolutional neural network then processes these data to produce the final image. By stitching images simultaneously, our method avoids the potential cascading errors seen in sequential pairwise stitching while offering improved time efficiency. In addition, we detail an unsupervised training method for the network utilizing metrics from Generative Adversarial Networks supplemented with supervised learning. Our testing revealed that the proposed approach operates in roughly ∼1/7th the time of many traditional methods on both CPU and GPU platforms, achieving results consistent with established methods.more » « less
-
Messinger, David W.; Velez-Reyes, Miguel (Ed.)Recently, multispectral and hyperspectral data fusion models based on deep learning have been proposed to generate images with a high spatial and spectral resolution. The general objective is to obtain images that improve spatial resolution while preserving high spectral content. In this work, two deep learning data fusion techniques are characterized in terms of classification accuracy. These methods fuse a high spatial resolution multispectral image with a lower spatial resolution hyperspectral image to generate a high spatial-spectral hyperspectral image. The first model is based on a multi-scale long short-term memory (LSTM) network. The LSTM approach performs the fusion using a multiple step process that transitions from low to high spatial resolution using an intermediate step capable of reducing spatial information loss while preserving spectral content. The second fusion model is based on a convolutional neural network (CNN) data fusion approach. We present fused images using four multi-source datasets with different spatial and spectral resolutions. Both models provide fused images with increased spatial resolution from 8m to 1m. The obtained fused images using the two models are evaluated in terms of classification accuracy on several classifiers: Minimum Distance, Support Vector Machines, Class-Dependent Sparse Representation and CNN classification. The classification results show better performance in both overall and average accuracy for the images generated with the multi-scale LSTM fusion over the CNN fusionmore » « less
An official website of the United States government

