skip to main content


Title: What if we were twice as close to the Sun? Interview findings from a science summer camp serving underrepresented youth
Diversity has been a prevalent issue in the American STEM workforce for a number of years. Efforts to increase diversification have resulted in alternate learning spaces such as makerspaces, after school programs, and technology integrated curriculums. Our study, hosted at a non-profit organization serving underrepresented youth, leveraged the video game Minecraft (MC) as a way to engage summer campers in scientific concepts and inquiries over one week. Reoccurring themes from interviews include familial rules on technology use at home, engaging with STEM in a novel way, and a love for building and creating within MC. We discuss our insight into the discoveries and challenges of these types of STEM-oriented program that takes place in informal settings.  more » « less
Award ID(s):
1713609
NSF-PAR ID:
10157300
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 14th International Conference on the Foundations of Digital Games
Page Range / eLocation ID:
1-7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grieff, S. (Ed.)
    Recently there has been increased development of curriculum and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) learning environments. These environments serve as a catalyst for authentic collaborative problem-solving (CPS) and help students synergistically learn STEM+C content. In this work, we analyzed students’ collaborative problem-solving behaviors as they worked in pairs to construct computational models in kinematics. We leveraged social measures, such as equity and turn-taking, along with a domain-specific measure that quantifies the synergistic interleaving of science and computing concepts in the students’ dialogue to gain a deeper understanding of the relationship between students’ collaborative behaviors and their ability to complete a STEM+C computational modeling task. Our results extend past findings identifying the importance of synergistic dialogue and suggest that while equitable discourse is important for overall task success, fluctuations in equity and turn-taking at the segment level may not have an impact on segment-level task performance. To better understand students’ segment-level behaviors, we identified and characterized groups’ planning, enacting, and reflection behaviors along with monitoring processes they employed to check their progress as they constructed their models. Leveraging Markov Chain (MC) analysis, we identified differences in high- and low-performing groups’ transitions between these phases of students’ activities. We then compared the synergistic, turn-taking, and equity measures for these groups for each one of the MC model states to gain a deeper understanding of how these collaboration behaviors relate to their computational modeling performance. We believe that characterizing differences in collaborative problem-solving behaviors allows us to gain a better understanding of the difficulties students face as they work on their computational modeling tasks. 
    more » « less
  2. Recent advances in GPU-based manycore accelerators provide the opportunity to efficiently process large-scale graphs on chip. However, real world graphs have a diverse range of topology and connectivity patterns (e.g., degree distributions) that make the design of input-agnostic hardware architectures a challenge. Network-on-Chip (NoC)- based architectures provide a way to overcome this challenge as the architectural topology can be used to approximately model the expected traffic patterns that emerge from graph application workloads. In this paper, we first study the mix of long- and short-range traffic patterns generated on-chip using graph workloads, and subsequently use the findings to adapt the design of an optimal NoC-based architecture. In particular, by leveraging emerging three-dimensional (3D) integration technology, we propose design of a small-world NoC (SWNoC)- enabled manycore GPU architecture, where the placement of the links connecting the streaming multiprocessors (SM) and the memory controllers (MC) follow a power-law distribution. The proposed 3D manycore GPU architecture outperforms the traditional planar (2D) counterparts in both performance and energy consumption. Moreover, by adopting a joint performance-thermal optimization strategy, we address the thermal concerns in a 3D design without noticeably compromising the achievable performance. The 3D integration technology is also leveraged to incorporate Near Data Processing (NDP) to complement the performance benefits introduced by the SWNoC architecture. As graph applications are inherently memory intensive, off-chip data movement gives rise to latency and energy overheads in the presence of external DRAM. In conventional GPU architectures, as the main memory layer is not integrated with the logic, off-chip data movement negatively impacts overall performance and energy consumption. We demonstrate that NDP significantly reduces the overheads associated with such frequent and irregular memory accesses in graph-based applications. The proposed SWNoC-enabled NDP framework that integrates 3D memory (like Micron's HMC) with a massive number of GPU cores achieves 29.5% performance improvement and 30.03% less energy consumption on average compared to a conventional planar Mesh-based design with external DRAM. 
    more » « less
  3. Abstract

    Our research centered on developing the Conservation Science and Technology Identity (CSTI) instruments as an empirical way to measure STEM identities and the intersection of identity constructs such as competence, performance, recognition, and ways of seeing and being. The surveys were used in a large funded multi‐year project for teens and adults learning geospatial technologies and conservation science to use in intergenerational community conservation projects. We investigated whether an informal STEM learning program was developing new STEM identities or advancing well‐developed identities. The instruments’ content validity was determined through a vetting process from national STEM identity research experts. Reliability was estimated with Cronbach coefficient alpha. Mann‐Whitney and Wilcoxon Signed Rank tests were used to determine participants’ STEM identities and the workshop’s effect on specific identity constructs. We found teens and adults had historically similar STEM identities, with stronger conservation science than technology. Both science and technology competences, as well as technology ways of seeing and being, significantly increased, suggesting CSTI can be a valuable instrument in empirically assessing STEM identities.

     
    more » « less
  4. Consistent with national trends, only about ½ of students who intend to major in STEM disciplines at Maryville College (MC) complete bachelor’s degrees in these fields. The Scots Science Scholars (S3) program was funded through the National Science Foundation’s STEM Talent Extension Program to increase the number of students graduating with STEM degrees from MC. The S3 program enrolls college freshmen who have an interest in STEM majors and math ACT scores between 21 and 27, with emphasis on students from groups underrepresented in STEM and first-generation college students. The program consists of a summer bridge, a living-learning community, early engagement in STEM research, a seminar series that exposes students to STEM careers and research fields, academic support through a first-year seminar class, peer tutoring, and time-management counseling. The program has enrolled 6 cohorts of students (n = 97) since 2013, (54% female, 22% underrepresented minorities and 35% first-generation college students). From 2013-2017, S3 compared favorably to the general college population: 96% of all S3 completed the first year of college, 69% declared STEM majors, and 85% returned to the college for a second year (compared to 71%, p < 0.001). Overall, S 3 students persist at the college longer than non-S3 students (P<0.01). Compared to a matched control group, S 3 had significantly higher STEM major declaration rates (68% vs. 38%), higher rates of STEM retention through the junior year (41% vs. 20%), and improved overall college persistence (P< 0.01). Students report high levels of satisfaction with the summer program. At the end of the summer program, students report gains in skills and attitudes that are important for success in STEM. They also perform significantly better on math and chemistry assessments after completing the program. College-wide, the number of students enrolled in STEM majors at Maryville has increased by 52% since the inception of S3 , and STEM undergraduate research productivity has increased markedly. Our data suggest the S3 program is an important component of institutional changes that are increasing the STEM population and building a robust and productive STEM culture at a liberal arts college. 
    more » « less
  5. This research paper focuses on the effect of recent national events on first-year engineering students’ attitudes about their political identity, social welfare, perspectives of diversity, and approaches to social situations. Engineering classrooms and cultures often focus on mastery of content and technical expertise with little prioritization given to integrating social issues into engineering. This depoliticization (i.e., the removal of social issues) in engineering removes the importance of issues related to including diverse individuals in engineering, working in diverse teams, and developing cultural sensitivity. This study resulted from the shift in the national discourse, during the 2016 presidential election, around diversity and identities in and out of the academy. We were collecting interview data as a part of a larger study on students attitudes about diversity in teams. Because these national events could affect students’ perceptions of our research topic, we changed a portion of our interviews to discuss national events in science, technology, engineering, and mathematics (STEM) classrooms and how students viewed these events in relation to engineering. We interviewed first-year undergraduate students (n = 12) who indicated large differences of attitudes towards diverse individuals, experiences with diverse team members, and/or residing at the intersection of multiple diversity markers. We asked participants during the Spring of 2017 to reflect on the personal impact of recent national events and how political discussions have or have not been integrated into their STEM classrooms. During interviews students were asked: 1) Have recent national events impacted you in any way? 2) Have national events been discussed in your STEM classes? 3) If so, what was discussed and how was it discussed? 4) Do these conversations have a place in STEM classes? 5) Are there events you wish were discussed that have not been? Inductive coding was used to analyze interviews and develop themes that were audited for quality by the author team. Two preliminary themes emerged from analysis: political awareness and future-self impact. Students expressed awareness of current political events at the local, national and global levels. They recognized personal and social impacts that these events imposed on close friends, family members, and society. However, students were unsure of how to interpret political dialogue as it relates to policy in engineering disciplines and practices. This uncertainty led students to question their future-selves or careers in engineering. As participants continued to discuss their uncertainty, they expressed a desire to make explicit connections between politics and STEM and their eventual careers in STEM. These findings suggest that depoliticization in the classroom results in engineering students having limited consciousness of how political issues are relevant to their field. This disconnect of political discourse in the classroom gives us a better understanding of how engineering students make sense of current national events in the face of depoliticization. By re-politicising STEM classrooms in a way relevant to students’ futures, educators can better utilize important dialogues to help students understand how their role as engineers influence society and how the experiences of society can influence their practice of engineering. 
    more » « less