skip to main content


Title: Picosecond to Nanosecond Manipulation of Excited-State Lifetimes in Complexes with an Fe II to Ti IV Metal-to-Metal Charge Transfer: The Role of Ferrocene Centered Excited States
Award ID(s):
1655740
NSF-PAR ID:
10157361
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
58
Issue:
22
ISSN:
0020-1669
Page Range / eLocation ID:
15320 to 15329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Transient absorption data of [Fe II (tpy)(CN) 3 ] − reveals spectroscopic signatures indicative of 3 MLCT with a ∼10 ps kinetic component. These data are supported by DFT and TD-DFT calculations, which show that excited state ordering is responsive to the number of cyanide ligands on the complex. 
    more » « less
  2. null (Ed.)
    A number of haptic displays based on smart fluidic materials such as electrorheological (ERFs) and magnetorheological fluids (MRFs) have been fabricated. These displays are relevant to medical virtual environments where it is important to create realistic simulations of soft tissues with varying stiffness. In this paper a new haptic device is described that was designed in consideration of the limitations of an earlier MRF display. The new prototype consists of 400 permanent magnets (PMs) arranged in a 20x20 array that is underneath a chamber filled with MRF. The magnetic field within the fluid is controlled by 400 PM stepping motors that move the magnets vertically. The magnetic behavior of the device was simulated using FEM which indicated that its spatial resolution was substantially improved when compared to the earlier prototype and that objects as small as 10 mm can be rendered. The device was fabricated and assembled and measurements demonstrated the accuracy of the FE model. Its novelty is demonstrated by the increased intensity of the magnetic field produced and the enhanced spatial resolution. These features will enable the dynamic presentation of haptic information such as object shape and compliance which will be characterized in future psychophysical experiments. 
    more » « less
  3. A series of Ru( ii )-terpyridine complexes containing electron-donating bidentate ligands are able to effectively photodissociate nitrile ligands using red light. A spectroscopic investigation of these complexes reveal that they follow anti-energy gap law behavior, providing further evidence that population of 3 LF excited states is not necessary for photoinduced nitrile dissociation. 
    more » « less