skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale Modeling Meets Machine Learning: What Can We Learn?
Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. This review serves as introduction to a special issue on Uncertainty Quantification, Machine Learning, and Data-Driven Modeling of Biological Systems that will help identify current roadblocks and areas where computational mechanics, as a discipline, can play a significant role. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems.  more » « less
Award ID(s):
1762063 1904444
PAR ID:
10157400
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Archives of Computational Methods in Engineering
ISSN:
1134-3060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the past few decades, we have witnessed tremendous advancements in biology, life sciences and healthcare. These advancements are due in no small part to the big data made available by various high-throughput technologies, the ever-advancing computing power, and the algorithmic advancements in machine learning. Specifically, big data analytics such as statistical and machine learning has become an essential tool in these rapidly developing fields. As a result, the subject has drawn increased attention and many review papers have been published in just the past few years on the subject. Different from all existing reviews, this work focuses on the application of systems, engineering principles and techniques in addressing some of the common challenges in big data analytics for biological, biomedical and healthcare applications. Specifically, this review focuses on the following three key areas in biological big data analytics where systems engineering principles and techniques have been playing important roles: the principle of parsimony in addressing overfitting, the dynamic analysis of biological data, and the role of domain knowledge in biological data analytics. 
    more » « less
  2. Abstract Advancements in computing power have recently made it possible to utilize machine learning and deep learning to push scientific computing forward in a range of disciplines, such as fluid mechanics, solid mechanics, materials science, etc. The incorporation of neural networks is particularly crucial in this hybridization process. Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data are sparse, which is the case in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multiphysics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension to these new simulation paradigms, especially when the real-time prediction of complex multiphysics systems is required. All these models also come with their own unique drawbacks and limitations that call for further fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs, PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their applications are reviewed, limitations are discussed, and future research opportunities are presented in terms of improving algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers. 
    more » « less
  3. Sustainability encompasses many wicked problems involving complex interdependencies across social, natural, and engineered systems. We argue holistic multiscale modeling and decision-support frameworks are needed to address multifaceted interdisciplinary aspects of these wicked problems. This review highlights three emerging research areas for artificial intelligence (AI) and machine learning (ML) in molecular-to-systems engineering for sustainability: (1) molecular discovery and materials design, (2) automation and self-driving laboratories, (3) process and systems-of-systems optimization. Recent advances in AI and ML are highlighted in four contemporary application areas in chemical engineering design: (1) equitable energy systems, (2) decarbonizing the power sector, (3) circular economies for critical materials, and (4) next-generation heating and cooling. These examples illustrate how AI and ML enable more sophisticated interdisciplinary multiscale models, faster optimization algorithms, more accurate uncertainty quantification, smarter and faster data collection, and incorporation of diverse stakeholders into decision-making processes, improving the robustness of engineering and policy designs while focusing on the multifaceted goals and constraints in wicked problems. 
    more » « less
  4. The current availability of soil moisture data over large areas comes from satellite remote sensing technologies (i.e., radar-based systems), but these data have coarse resolution and often exhibit large spatial information gaps. Where data are too coarse or sparse for a given need (e.g., precision farming), one can leverage machine-learning techniques coupled with other sources of environmental information (e.g., topography) to generate gap-free information at a finer spatial resolution (i.e., increased granularity). To this end, we develop a spatial inference engine consisting of modular stages for processing spatial environmental data, generating predictions with machine-learning techniques, and analyzing these predictions. We demonstrate the functionality of this approach and the effects of data processing choices via multiple prediction maps over a United States ecological region with a highly diverse soil moisture profile (i.e., the Middle Atlantic Coastal Plains). The relevance of our work derives from a pressing need to improve the spatial representation of soil moisture for applications in environmental sciences (e.g., ecological niche modeling, carbon monitoring systems, and other Earth system models) and precision farming (e.g., optimizing irrigation practices and other land management decisions). 
    more » « less
  5. Density functional theory (DFT) has been applied to modeling molecular interactions in water for over three decades. The ubiquity of water in chemical and biological processes demands a unified understanding of its physics, from the single molecule to the thermodynamic limit and everything in between. Recent advances in the development of data-driven and machine-learning potentials have accelerated simulation of water and aqueous systems with DFT accuracy. However, anomalous properties of water in the condensed phase, where a rigorous treatment of both local and non-local many-body (MB) interactions is in order, are often unsatisfactory or partially missing in DFT models of water. In this review, we discuss the modeling of water and aqueous systems based on DFT and provide a comprehensive description of a general theoretical/computational framework for the development of data-driven many-body potentials from DFT reference data. This framework, coined MB-DFT, readily enables efficient many-body molecular dynamics (MD) simulations of small molecules, in both gas and condensed phases, while preserving the accuracy of the underlying DFT model. Theoretical considerations are emphasized, including the role that the delocalization error plays in MB-DFT potentials of water and the possibility to elevate DFT and MB-DFT to near-chemical-accuracy through a density-corrected formalism. The development of the MB-DFT framework is described in detail, along with its application in MB-MD simulations and recent extension to the modeling of reactive processes in solution within a quantum mechanics/MB molecular mechanics (QM/MB-MM) scheme, using water as a prototypical solvent. Finally, we identify open challenges and discuss future directions for MB-DFT and QM/MB-MM simulations in condensed phases. 
    more » « less