Soil moisture is an important parameter that regulates multiple ecosystem processes and provides important information for environmental management and policy decision-making. Spaceborne sensors provide soil moisture information over large areas, but information is commonly available at coarse resolution with spatial and temporal gaps. Here, we present a modular spatial inference framework to downscale satellite-derived soil moisture using terrain parameters and test the performance of two modeling methods (Kernel-Weighted K-Nearest Neighbor and Random Forest ). We generate monthly and weekly gap-free spatial predictions on soil moisture at 1 km using data from the European Space Agency Climate Change Initiative (ESA-CCI; version 6.1) over two regions in the conterminous United States. RF was the method that performed better in cross-validation when comparing with the reference ESA-CCI data, but KKNN showed a slightly higher agreement with ground-truth information as part of independent validation. We postulate that more heterogeneous landscapes (i.e., high topographic variation) may be more challenging for downscaling and predicting soil moisture; therefore, moisture networks should increase monitoring efforts across these complex landscapes. Future opportunities for development of modular cyberinfrastructure tools for downscaling satellite-derived soil moisture are discussed.
more »
« less
SOMOSPIE: A Modular SOil MOisture SPatial Inference Engine Based on Data-Driven Decisions
The current availability of soil moisture data over large areas comes from satellite remote sensing technologies (i.e., radar-based systems), but these data have coarse resolution and often exhibit large spatial information gaps. Where data are too coarse or sparse for a given need (e.g., precision farming), one can leverage machine-learning techniques coupled with other sources of environmental information (e.g., topography) to generate gap-free information at a finer spatial resolution (i.e., increased granularity). To this end, we develop a spatial inference engine consisting of modular stages for processing spatial environmental data, generating predictions with machine-learning techniques, and analyzing these predictions. We demonstrate the functionality of this approach and the effects of data processing choices via multiple prediction maps over a United States ecological region with a highly diverse soil moisture profile (i.e., the Middle Atlantic Coastal Plains). The relevance of our work derives from a pressing need to improve the spatial representation of soil moisture for applications in environmental sciences (e.g., ecological niche modeling, carbon monitoring systems, and other Earth system models) and precision farming (e.g., optimizing irrigation practices and other land management decisions).
more »
« less
- Award ID(s):
- 1854312
- PAR ID:
- 10161579
- Date Published:
- Journal Name:
- 15th International Conference on eScience, eScience 2019, San Diego, CA, USA, September 24-27, 2019
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the interactions among agricultural processes, soil, and plants is necessary for optimizing crop yield and productivity. This study focuses on developing effective monitoring and analysis methodologies that estimate key soil and plant properties. These methodologies include data acquisition and processing approaches that use unmanned aerial vehicles (UAVs) and surface geophysical techniques. In particular, we applied these approaches to a soybean farm in Arkansas to characterize the soil–plant coupled spatial and temporal heterogeneity, as well as to identify key environmental factors that influence plant growth and yield. UAV-based multitemporal acquisition of high-resolution RGB (red–green–blue) imagery and direct measurements were used to monitor plant height and photosynthetic activity. We present an algorithm that efficiently exploits the high-resolution UAV images to estimate plant spatial abundance and plant vigor throughout the growing season. Such plant characterization is extremely important for the identification of anomalous areas, providing easily interpretable information that can be used to guide near-real-time farming decisions. Additionally, high-resolution multitemporal surface geophysical measurements of apparent soil electrical conductivity were used to estimate the spatial heterogeneity of soil texture. By integrating the multiscale multitype soil and plant datasets, we identified the spatiotemporal co-variance between soil properties and plant development and yield. Our novel approach for early season monitoring of plant spatial abundance identified areas of low productivity controlled by soil clay content, while temporal analysis of geophysical data showed the impact of soil moisture and irrigation practice (controlled by topography) on plant dynamics. Our study demonstrates the effective coupling of UAV data products with geophysical data to extract critical information for farm management.more » « less
-
To trust findings in computational science, scientists need workflows that trace the data provenance and support results explainability. As workflows become more complex, tracing data provenance and explaining results become harder to achieve. In this paper, we propose a computational environment that automatically creates a workflow execution’s record trail and invisibly attaches it to the workflow’s output, enabling data traceability and results explainability. Our solution transforms existing container technology, includes tools for automatically annotating provenance metadata, and allows effective movement of data and metadata across the workflow execution. We demonstrate the capabilities of our environment with the study of SOMOSPIE, an earth science workflow. Through a suite of machine learning modeling techniques, this workflow predicts soil moisture values from the 27 km resolution satellite data down to higher resolutions necessary for policy making and precision agriculture. By running the workflow in our environment, we can identify the causes of different accuracy measurements for predicted soil moisture values in different resolutions of the input data and link different results to different machine learning methods used during the soil moisture downscaling, all without requiring scientists to know aspects of workflow design and implementation.more » « less
-
S. Javankhoshdel and Y. Abolfazlzadeh (Ed.)Understanding the moisture distribution pattern and associated suction variability of soil in response to environmental loading (e.g., precipitation, temperature) is important. However, there is a lack of understanding of the spatial variability of moisture and suction in different final cover systems. In this study, the spatial correlations between soil moisture and suction data from field instrumentation are examined using Spearman’s rank correlation test of three different types of landfill final cover systems: evapotranspiration (ET) cover, conventional clay cover, and engineered turf cover, under identical atmospheric conditions. In addition, box and whiskers plots were used to investigate the distribution of the field-measured data under environmental fluctuation. As observed from the box plot, soil moisture displayed maximum spatial heterogeneity in clay cover and very less in the engineered turf cover under identical environmental conditions. The ET cover exhibited a very strong spatial correlation of moisture and suction as indicated by the highly significant Spearman’s rank correlations (rs) ranging from −0.88 to −0.93. The clay cover showed a strong to moderate correlation (−0.51 < rs < −0.74) between the spatial distribution of moisture and suction. On the other hand, the engineered turf cover displayed poor agreement of the spatial moisture-suction distribution implying the soil under the engineered turf is relatively non-responsive under environmental variability compared to clay and ET cover. The preliminary findings from this study showed engineered turf’s capacity to maintain more moisture stability of the turf under the humid subtropical climate than other landfill covers.more » « less
-
Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources.more » « less
An official website of the United States government

