skip to main content

Title: A test of the light attraction hypothesis in camel spiders of the Mojave Desert (Arachnida: Solifugae)
Research progress on the order Solifugae, commonly known as camel spiders, has been hindered by challenges inherent in collecting these fast-moving, nocturnal predators. Recently, pitfall trapping combined with artificial light lures showed promise for improving capture rates, but the hypothesis that camel spiders are attracted to light traps (positive phototaxis) has never been tested. We constructed short pitfall trap arrays with and without lights across the Mojave Desert to test the light attraction hypothesis. Nearly all camel spiders we collected were found in traps with suspended lights, lending strong support for positive phototaxis. Distance from the lights within trap arrays does not appear to be correlated with the success of individual pitfall traps. Excitingly, our short pitfall light arrays, or Caterpillar light traps, were relatively easy to install and yielded an order of magnitude more camel spiders per effort hour than previously reported techniques.
; ;
Award ID(s):
Publication Date:
Journal Name:
The Journal of arachnology
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. 1. Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analyzed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. 2. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behavior, incorporating environmental realism not possible in the lab while benefiting from the distinct capacity of camera traps to generate large data sets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. 3. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. 4. Only 9% of camera trap studies on predator-prey ecology in our review mention experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennialmore »question in predator-prey ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. 5. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances.« less
  2. The improvement of conjugated polymer-based gas sensors involves fine tuning the backbone electronic structure and solid-state microstructure to combine high stability and sensitivity. We had previously developed a series of diketopyrrolopyrrole (DPP)-based polymer semiconductors by introducing a variety of fluorene linkers to study the trends and mechanisms governing gas sensitivities and electronic stability in air and under gate and drain bias stress. The proportional on-current change of organic field-effect transistors (OFETs) using a dithienyl DPP–fluorene polymer reached ∼600% for a sequential exposure from 0.5–20 ppm of NO 2 for 5 minutes and also a high response-to-drift ratio under dynamic bias stress. In the present work we specify the roles of static bias stress and traps in the sensing process for the first time. Apart from electronic structure, defects at the molecular and microstructural levels govern the ability to form and sustain traps and subsequent backbone dopability. A polymer with a twisted backbone was observed to be capable of creating an energetically broad trap distribution while a polymer with a high degree of solid-state order shows a tendency to form an energetically narrow trap distribution and a fast passivation of traps on exposure to air. The stability and energetic distribution ofmore »traps on subjecting the polymers to bias stress was related to electronic structure and solid-state packing; and the ability of NO 2 and NH 3 to fill/create traps further was evaluated. At a bias stress condition of V G = V D = −80 V, the polymers retain their NO 2 sensitivity both post NO 2 -aided recovery and air-aided recovery. In order to verify the ability of NH 3 to create traps, traps were erased from the OFET sensors by charging with the aid of a positive gate voltage leading to an increase in the NH 3 response when compared to air controls. This work demonstrates that the charge-trap filling and generation response mechanism is predominant and can even be leveraged for higher responses to vapors. Backbone dopability appears to be a minor contributor to responses in this category of polymeric semiconductors with engineered defects. Finally, bias stress generally does not preclude this category of OFET vapor sensors from recovering their original sensitivities.« less
  3. Radio-frequency (RF) charged particle traps, such as the Paul trap or higher order RF multipole traps, may be used to trap quasi-neutral plasma. The presence of positive and negative plasma species mitigates the ejection of particles that occurs due to space charge repulsion. For symmetric species, such as a pair plasma, the trapped particle distribution is essentially equal for both species. For plasma with species of disparate charge-to-mass ratio, the RF parameters are chosen to directly trap the lighter species, leading to loss of the heavier species until sufficient net space charge develops to prevent further loss. Two-dimensional (2D) electrostatic particle-in-cell simulations are performed of cases with mass ratio m+/m− = 10, and also with ion–electron plasma. Multipole cases including order N = 2 (quadrupole) and higher order N = 8 (hexadecapole) are considered. The light ion-heavy ion N = 8 case exhibits particles losses less than 5% over 2500 RF periods, but the N = 8 ion–electron case exhibits a higher loss rate, likely due to non-adiabaticity of electron trajectories at the boundary, but still with low total electron loss current on the order of 10 μA. The N = 2 ion-electron case is adiabatic and stable, but ismore »subject to a smaller trapping volume and greater initial perturbation of the bulk plasma by the trapping field.« less
  4. Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed “phototaxis,” enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacteriumSynechocystissp. strain PCC 6803, but the rod-shapedSynechococcus elongatusPCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate ofS. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe(Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ fromSynechocystis. Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSeto sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSecontrols both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis inSynechocystis.

  5. Penning-trap mass spectrometry in atomic and nuclear physics has become a well-established and reliable tool for the determination of atomic masses. In combination with short-lived radioactive nuclides it was first introduced at ISOLTRAP at the Isotope Mass Separator On-Line facility (ISOLDE) at CERN. Penning traps have found new applications in coupling to other production mechanisms, such as in-flight production and separation systems. The applications in atomic and nuclear physics range from nuclear structure studies and related precision tests of theoretical approaches to description of the strong interaction to tests of the electroweak Standard Model, quantum electrodynamics and neutrino physics, and applications in nuclear astrophysics. The success of Penning-trap mass spectrometry is due to its precision and accuracy, even for low ion intensities (i.e., low production yields), as well as its very fast measurement cycle, enabling access to short-lived isotopes. The current reach in relative mass precision goes beyond δ m/ m=10 −8 , the half-life limit is as low as a few milliseconds, and the sensitivity is on the order of one ion per minute in the trap. We provide a comprehensive overview of the techniques and applications of Penning-trap mass spectrometry in nuclear and atomic physics.