skip to main content

Title: Zooming in on mechanistic predator–prey ecology: Integrating camera traps with experimental methods to reveal the drivers of ecological interactions
1. Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analyzed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. 2. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behavior, incorporating environmental realism not possible in the lab while benefiting from the distinct capacity of camera traps to generate large data sets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. 3. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. 4. Only 9% of camera trap studies on predator-prey ecology in our review mention experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennial question in predator-prey more » ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. 5. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances. « less
Award ID(s):
Publication Date:
Journal Name:
The journal of animal ecology
Sponsoring Org:
National Science Foundation
More Like this
  1. Acvedo, Miguel (Ed.)
    Camera traps (CTs) are a valuable tool in ecological research, amassing large quantities of information on the behaviour of diverse wildlife communities. CTs are predominantly used as passive data loggers to gather observational data for correlational analyses. Integrating CTs into experimental studies, however, can enable rigorous testing of key hypotheses in animal behaviour and conservation biology that are otherwise difficult or impossible to evaluate. We developed the 'BoomBox', an open-source Arduino-compatible board that attaches to commercially available CTs to form an Automated Behavioural Response (ABR) system. The modular unit connects directly to the CT’s passive infrared (PIR) motion sensor, playing audio files over external speakers when the sensor is triggered. This creates a remote playback system that captures animal responses to specific cues, combining the benefits of camera trapping (e.g. continuous monitoring in remote locations, lack of human observers, large data volume) with the power of experimental manipulations (e.g. controlled perturbations for strong mechanistic inference). Our system builds on previous ABR designs to provide a cheap (~100USD) and customizable field tool. We provide a practical guide detailing how to build and operate the BoomBox ABR system with suggestions for potential experimental designs that address a variety of questions in wildlifemore »ecology. As proof-of-concept, we successfully field tested the BoomBox in two distinct field settings to study species interactions (predator–prey and predator–predator) and wildlife responses to conservation interventions. This new tool allows researchers to conduct a unique suite of manipulative experiments on free-living species in complex environments, enhancing the ability to identify mechanistic drivers of species' behaviours and interactions in natural systems.« less
  2. Abstract Large-scale studies on community ecology are highly desirable but often difficult to accomplish due to the considerable investment of time, labor and, money required to characterize richness, abundance, relatedness, and interactions. Nonetheless, such large-scale perspectives are necessary for understanding the composition, dynamics, and resilience of biological communities. Small invertebrates play a central role in ecosystems, occupying critical positions in the food web and performing a broad variety of ecological functions. However, it has been particularly difficult to adequately characterize communities of these animals because of their exceptionally high diversity and abundance. Spiders in particular fulfill key roles as both predator and prey in terrestrial food webs and are hence an important focus of ecological studies. In recent years, large-scale community analyses have benefitted tremendously from advances in DNA barcoding technology. High-throughput sequencing (HTS), particularly DNA metabarcoding, enables community-wide analyses of diversity and interactions at unprecedented scales and at a fraction of the cost that was previously possible. Here, we review the current state of the application of these technologies to the analysis of spider communities. We discuss amplicon-based DNA barcoding and metabarcoding for the analysis of community diversity and molecular gut content analysis for assessing predator-prey relationships. We alsomore »highlight applications of the third generation sequencing technology for long read and portable DNA barcoding. We then address the development of theoretical frameworks for community-level studies, and finally highlight critical gaps and future directions for DNA analysis of spider communities.« less
  3. Abstract Background

    The leaves of carnivorous pitcher plants harbor diverse communities of inquiline species, including bacteria and larvae of the pitcher plant mosquito (Wyeomyia smithii), which aid the plant by processing captured prey. Despite the growing appreciation for this microecosystem as a tractable model in which to study food web dynamics and the moniker ofW. smithiias a ‘keystone predator’, very little is known about microbiota acquisition and assembly inW. smithiimosquitoes or the impacts ofW. smithii-microbiota interactions on mosquito and/or plant fitness.


    In this study, we used high throughput sequencing of bacterial 16S rRNA gene amplicons to characterize and compare microbiota diversity in field- and laboratory-derivedW. smithiilarvae. We then conducted controlled experiments in the laboratory to better understand the factors shaping microbiota acquisition and persistence across theW. smithiilife cycle. Methods were also developed to produce axenic (microbiota-free)W. smithiilarvae that can be selectively recolonized with one or more known bacterial species in order to study microbiota function. Our results support a dominant role for the pitcher environment in shaping microbiota diversity inW. smithiilarvae, while also indicating that pitcher-associated microbiota can persist in and be dispersed by adultW. smithiimosquitoes. We also demonstrate the successful generation of axenicW. smithiilarvae and report variable fitness outcomes inmore »gnotobiotic larvae monocolonized by individual bacterial isolates derived from naturally occurring pitchers in the field.


    This study provides the first information on microbiota acquisition and assembly inW. smithiimosquitoes. This study also provides the first evidence for successful microbiota manipulation in this species. Altogether, our results highlight the value of such methods for studying host-microbiota interactions and lay the foundation for future studies to understand howW. smithii-microbiota interactions shape the structure and stability of this important model ecosystem.

    « less
  4. Camera traps - remote cameras that capture images of passing wildlife - have become a ubiquitous tool in ecology and conservation. Systematic camera trap surveys generate ‘Big Data’ across broad spatial and temporal scales, providing valuable information on environmental and anthropogenic factors affecting vulnerable wildlife populations. However, the sheer number of images amassed can quickly outpace researchers’ ability to manually extract data from these images (e.g., species identities, counts, and behaviors) in timeframes useful for making scientifically-guided conservation and management decisions. Here, we present ‘Snapshot Safari’ as a case study for merging citizen science and machine learning to rapidly generate highly accurate ecological Big Data from camera trap surveys. Snapshot Safari is a collaborative cross-continental research and conservation effort with 1500+ cameras deployed at over 40 eastern and southern Africa protected areas, generating millions of images per year. As one of the first and largest-scale camera trapping initiatives, Snapshot Safari spearheaded innovative developments in citizen science and machine learning. We highlight the advances made and discuss the issues that arose using each of these methods to annotate camera trap data. We end by describing how we combined human and machine classification methods (‘Crowd AI’) to create an efficient integrated datamore »pipeline. Ultimately, by using a feedback loop in which humans validate machine learning predictions and machine learning algorithms are iteratively retrained on new human classifications, we can capitalize on the strengths of both methods of classification while mitigating the weaknesses. Using Crowd AI to quickly and accurately ‘unlock’ ecological Big Data for use in science and conservation is revolutionizing the way we take on critical environmental issues in the Anthropocene era.« less
  5. Abstract

    Direct and indirect interactions among predators affect predator fitness, distribution, and overall community structure. Yet, outside of experimental settings, such interactions are difficult to observe and thus poorly understood. Patterns of niche overlap among predators reflect and shape community interactions and may therefore help elucidate the nature and intensity of intraguild interactions. To better understand the coexistence of two apex predators, snow leopards (Panthera uncia) and wolves (Canis lupus), we investigated their spatial, temporal, and dietary niche overlap in summer in the Pamir Mountains of Tajikistan. We estimated population-level space use via spatial capture–recapture models based on noninvasive genetics and camera traps, diel activity patterns based on camera trap detections, and diet composition from prey remains in carnivore scats, from which we estimated coefficients between 0 and 1 for overlap in space, time, and diet, respectively. Snow leopards and wolves displayed moderate spatial partitioning (0.26, 95% confidence interval [CI]: 0.17–37), but overlapping temporal (0.77, 95% CI: 0.64–0.90) and dietary (0.97, 95% CI: 0.80–0.99) niches. Both predators relied on seasonally abundant marmots (Marmota caudata) rather than wild ungulates, their typical primary prey, suggesting that despite patterns of overlap that were superficially conducive to exploitation competition and predator facilitation, prey weremore »likely not a limiting factor. Therefore, prey-mediated interactions, if present, were unlikely to be a major structuring force in the ecosystem. By implication, carnivore conservation planning and monitoring in the mountains of Central Asia should more fully account for the seasonal importance of marmots in the ecosystem.

    « less