skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The stellar mass Fundamental Plane: the virial relation and a very thin plane for slow rotators
ABSTRACT Early-type galaxies – slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars – define a Fundamental Plane (FP) in the space of half-light radius Re, enclosed surface brightness Ie, and velocity dispersion σe. Since Ie and σe are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which Ie and σe can be used to estimate sizes Re. We show that: (1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in Re is $$\sim 16{{\ \rm per\ cent}}$$, of which only $$\sim 9{{\ \rm per\ cent}}$$ is intrinsic. Removing galaxies with M* < 1011 M⊙ further reduces the observed scatter to $$\sim 13{{\ \rm per\ cent}}$$ ($$\sim 4{{\ \rm per\ cent}}$$ intrinsic). The observed scatter increases to $$\sim 25{{\ \rm per\ cent}}$$ usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only 5 per cent orthogonal to the plane. (2) The structure within the FP is most easily understood as arising from the fact that Ie and σe are nearly independent, whereas the Re−Ie and Re−σe correlations are nearly equal and opposite. (3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be ‘tilted’. If we multiply Ie by the global stellar mass-to-light ratio M*/L and we account for non-homology across the population by using Sérsic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for M*/L gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases.  more » « less
Award ID(s):
1816330
PAR ID:
10157626
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
494
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5148 to 5160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($$M_{*}\sim 10^{11}\, \rm {M_{\odot }}$$ at z = 2, hosted by haloes of mass $$M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $$1\, \rm {kpc}$$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2. 
    more » « less
  2. ABSTRACT We use the TNG50 from the IllustrisTNG suite of cosmological hydrodynamical simulation, complemented by a catalogue of tagged globular clusters, to investigate the properties and build up of two extended luminous components: the intra-cluster light (ICL) and the intra-cluster globular clusters (ICGCs). We select the 39 most massive groups and clusters in the box, spanning the range of virial masses $$5 \times 10^{12} \lt \rm M_{200}/\rm {\rm M}_{\odot } \lt 2 \times 10^{14}$$. We find good agreement between predictions from the simulations and current observational estimates of the fraction of mass in the ICL and its radial extension. The stellar mass of the ICL is only $$\sim 10~{{\ \rm per\ cent}}$$–20 per cent of the stellar mass in the central galaxy but encodes useful information on the assembly history of the group or cluster. About half the ICL in all our systems is brought in by galaxies in a narrow stellar mass range, M* = 1010–1011 M⊙. However, the contribution of low-mass galaxies (M* < 1010 M⊙) to the build up of the ICL varies broadly from system to system, $$\sim 5~{{\ \rm per\ cent}}-45~{{\ \rm per\ cent}}$$, a feature that might be recovered from the observable properties of the ICL at z = 0. At fixed virial mass, systems where the accretion of dwarf galaxies plays an important role have shallower metallicity profiles, less metal content, and a lower stellar mass in the ICL than systems where the main contributors are more massive galaxies. We show that intra-cluster GCs are also good tracers of this history, representing a valuable alternative when diffuse light is not detectable. 
    more » « less
  3. ABSTRACT Observational studies are finding stars believed to be relics of the earliest stages of hierarchical mass assembly of the Milky Way (i.e. proto-galaxy). In this work, we contextualize these findings by studying the masses, ages, spatial distributions, morphology, kinematics, and chemical compositions of proto-galaxy populations from the 13 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. Our findings indicate that proto-Milky Way populations: (i) can have a stellar mass range between 1 × 108 < M⋆ < 2 × 1010 [M⊙], a virial mass range between 3 × 1010 < M⋆ < 6 × 1011 [M⊙], and be as young as 8 ≲ Age ≲ 12.8 [Gyr] (1 ≲ z ≲ 6); (ii) are pre-dominantly centrally concentrated, with $$\sim 50~{{\ \rm per\ cent}}$$ of the stars contained within 5–10 kpc; (iii) on average show weak but systematic net rotation in the plane of the host’s disc at z = 0 (i.e. 0.25 ≲ 〈κ/κdisc〉 ≲ 0.8); (iv) present [α/Fe]-[Fe/H] compositions that overlap with the metal-poor tail of the host’s old disc; and (v) tend to assemble slightly earlier in Local Group-like environments than in systems in isolation. Interestingly, we find that $$\sim 60~{{\ \rm per\ cent}}$$ of the proto-Milky Way galaxies are comprised by 1 dominant system (1/5 ≲M⋆/M⋆, proto-MilkyWay≲ 4/5) and 4–5 lower mass systems (M⋆/M⋆, proto-MilkyWay≲ 1/10); the other $$\sim 40~{{\ \rm per\ cent}}$$ are comprised by 2 dominant systems and 3–4 lower mass systems. These massive/dominant proto-Milky Way fragments can be distinguished from the lower mass ones in chemical-kinematic samples, but appear (qualitatively) indistinguishable from one another. Our results could help observational studies disentangle if the Milky Way formed from one or two dominant systems. 
    more » « less
  4. ABSTRACT The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $$z \gtrsim 6$$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct HST/JWST observations. Using 882 low-mass ($$M_{\rm star}\lesssim 10^{9}\, \rm {M_\odot }$$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $$z=6\!-\!9$$, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $$M_{\rm star}\sim 10^5\, \rm {M_\odot }$$ ($$\sim 10^9\, \rm {M_\odot }$$) had $$\approx 1$$ ($$\approx 30$$) progenitors at $$z\approx 7$$, and its main progenitor comprised $$\approx 100~{{\ \rm per\ cent}}$$ ($$\approx 10~{{\ \rm per\ cent}}$$) of the total stellar mass of all its progenitors at $$z\approx 7$$. We show that although only $$\sim 15~{{\ \rm per\ cent}}$$ of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $$z \sim 6 \!-\! 9$$. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $$M_{\rm star} \sim 10^{4.5}\, \rm {{\rm M}_{\odot }}$$ at $$z \gtrsim 6$$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies. 
    more » « less
  5. ABSTRACT We study the formation of ultradiffuse galaxies (UDGs) using the cosmological hydrodynamical simulation TNG50 of the Illustris-TNG suite. We define UDGs as dwarf galaxies in the stellar mass range $$\rm {7.5 \le log (M_{\star } / {\rm M}_{\odot }) \le 9 }$$ that are in the 5 per cent most extended tail of the simulated mass–size relation. This results in a sample of UDGs with half-mass radii $$\rm {r_{h \star } \gtrsim 2 \ kpc}$$ and surface brightness between $$\rm {24.5}$$ and $$\rm {28 \ mag \ arcsec^{-2}}$$, similar to definitions of UDGs in observations. The large cosmological volume in TNG50 allows for a comparison of UDGs properties in different environments, from the field to galaxy clusters with virial mass $$\rm {M_{200} \sim 2 \times 10^{14} ~ {\rm M}_{\odot }}$$. All UDGs in our sample have dwarf-mass haloes ($$\rm {M_{200}\sim 10^{11} ~ {\rm M}_{\odot } }$$) and show the same environmental trends as normal dwarfs: field UDGs are star-forming and blue while satellite UDGs are typically quiescent and red. The TNG50 simulation predicts UDGs that populate preferentially higher spin haloes and more massive haloes at fixed $$\rm {M_{\star }}$$ compared to non-UDG dwarfs. This applies also to most satellite UDGs, which are actually ‘born’ UDGs in the field and infall into groups and clusters without significant changes to their size. We find, however, a small subset of satellite UDGs ($$\lesssim 10~{{\ \rm per\ cent}}$$) with present-day stellar size a factor ≥1.5 larger than at infall, confirming that tidal effects, particularly in the lower mass dwarfs, are also a viable formation mechanism for some of these dwarfs, although sub-dominant in this simulation. 
    more » « less