skip to main content

Title: The stellar mass Fundamental Plane: the virial relation and a very thin plane for slow rotators
ABSTRACT Early-type galaxies – slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars – define a Fundamental Plane (FP) in the space of half-light radius Re, enclosed surface brightness Ie, and velocity dispersion σe. Since Ie and σe are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which Ie and σe can be used to estimate sizes Re. We show that: (1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in Re is $\sim 16{{\ \rm per\ cent}}$, of which only $\sim 9{{\ \rm per\ cent}}$ is intrinsic. Removing galaxies with M* < 1011 M⊙ further reduces the observed scatter to $\sim 13{{\ \rm per\ cent}}$ ($\sim 4{{\ \rm per\ cent}}$ intrinsic). The observed scatter increases to $\sim 25{{\ \rm per\ cent}}$ usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only 5 per cent orthogonal to the plane. (2) The structure within the FP is most easily understood as arising from the fact that Ie and σe are nearly independent, whereas the Re−Ie and Re−σe correlations are nearly equal and opposite. (3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be ‘tilted’. If we multiply Ie by the global stellar mass-to-light ratio M*/L and we account for non-homology across the population by using Sérsic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for M*/L gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
5148 to 5160
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    We study systematics associated with estimating simple stellar population (SSP) parameters – age, metallicity [M/H], α-enhancement [α/Fe], and initial mass function (IMF) shape – and associated M*/L gradients, of elliptical slow rotators (E-SRs), fast rotators (E-FRs), and S0s from stacked spectra of galaxies in the MaNGA survey. These systematics arise from (i) how one normalizes the spectra when stacking; (ii) having to subtract emission before estimating absorption line strengths; (iii) the decision to fit the whole spectrum or just a few absorption lines; (iv) SSP model differences (e.g. isochrones, enrichment, IMF). The MILES+Padova SSP models, fit to the Hβ, 〈Fe〉, TiO2SDSS, and [MgFe] Lick indices in the stacks, indicate that out to the half-light radius Re: (a) ages are younger and [α/Fe] values are lower in the central regions but the opposite is true of [M/H]; (b) the IMF is more bottom-heavy in the center, but is close to Kroupa beyond about Re/2; (c) this makes M*/L about 2 × larger in the central regions than beyond Re/2. While the models of Conroy et al. return similar [M/H] and [α/Fe] profiles, the age and (hence) M*/L profiles can differ significantly even for solar abundances and a Kroupa IMF; different responses to non-solar abundances and IMF parametrization further compound these differences. There are clear (model independent) differences between E-SRs, E-FRs, and S0s: younger ages and less enhanced [α/Fe] values suggest that E-FRs and S0s are not SSPs, but relaxing this assumption is unlikely to change their inferred M*/L gradients significantly.

    more » « less
  2. Abstract This is the third paper of a series where we study the stellar population gradients (SP; ages, metallicities, α-element abundance ratios and stellar initial mass functions) of early type galaxies (ETGs) at z ≤ 0.08 from the MaNGA-DR15 survey. In this work we focus on the S0 population and quantify how the SP varies across the population as well as with galactocentric distance. We do this by measuring Lick indices and comparing them to stellar population synthesis models. This requires spectra with high signal-to-noise which we achieve by stacking in bins of luminosity (Lr) and central velocity dispersion (σ0). We find that: 1) There is a bimodality in the S0 population: S0s more massive than 3 × 1010M⊙ show stronger velocity dispersion and age gradients (age and σr decrease outwards) but little or no metallicity gradient, while the less massive ones present relatively flat age and velocity dispersion profiles, but a significant metallicity gradient (i.e. [M/H] decreases outwards). Above 2 × 1011M⊙ the number of S0s drops sharply. These two mass scales are also where global scaling relations of ETGs change slope. 2) S0s have steeper velocity dispersion profiles than fast rotating elliptical galaxies (E-FRs) of the same luminosity and velocity dispersion. The kinematic profiles and stellar population gradients of E-FRs are both more similar to those of slow rotating ellipticals (E-SRs) than to S0s, suggesting that E-FRs are not simply S0s viewed face-on. 3) At fixed σ0, more luminous S0s and E-FRs are younger, more metal rich and less α-enhanced. Evidently for these galaxies, the usual statement that ‘massive galaxies are older’ is not true if σ0 is held fixed. 
    more » « less

    We study the formation of ultradiffuse galaxies (UDGs) using the cosmological hydrodynamical simulation TNG50 of the Illustris-TNG suite. We define UDGs as dwarf galaxies in the stellar mass range $\rm {7.5 \le log (M_{\star } / {\rm M}_{\odot }) \le 9 }$ that are in the 5 per cent most extended tail of the simulated mass–size relation. This results in a sample of UDGs with half-mass radii $\rm {r_{h \star } \gtrsim 2 \ kpc}$ and surface brightness between $\rm {24.5}$ and $\rm {28 \ mag \ arcsec^{-2}}$, similar to definitions of UDGs in observations. The large cosmological volume in TNG50 allows for a comparison of UDGs properties in different environments, from the field to galaxy clusters with virial mass $\rm {M_{200} \sim 2 \times 10^{14} ~ {\rm M}_{\odot }}$. All UDGs in our sample have dwarf-mass haloes ($\rm {M_{200}\sim 10^{11} ~ {\rm M}_{\odot } }$) and show the same environmental trends as normal dwarfs: field UDGs are star-forming and blue while satellite UDGs are typically quiescent and red. The TNG50 simulation predicts UDGs that populate preferentially higher spin haloes and more massive haloes at fixed $\rm {M_{\star }}$ compared to non-UDG dwarfs. This applies also to most satellite UDGs, which are actually ‘born’ UDGs in the field and infall into groups and clusters without significant changes to their size. We find, however, a small subset of satellite UDGs ($\lesssim 10~{{\ \rm per\ cent}}$) with present-day stellar size a factor ≥1.5 larger than at infall, confirming that tidal effects, particularly in the lower mass dwarfs, are also a viable formation mechanism for some of these dwarfs, although sub-dominant in this simulation.

    more » « less
  4. null (Ed.)
    ABSTRACT Both the CO(2–1) and CO(1–0) lines are used to trace the mass of molecular gas in galaxies. Translating the molecular gas mass estimates between studies using different lines requires a good understanding of the behaviour of the CO(2–1)-to-CO(1–0) ratio, R21. We compare new, high-quality CO(1–0) data from the IRAM 30-m EMIR MultiLine Probe of the ISM Regulating Galaxy Evolution survey to the latest available CO(2–1) maps from HERA CO-Line Extragalactic Survey, Physics at High Angular resolution in Nearby Galaxies-ALMA, and a new IRAM 30-m M51 Large Program. This allows us to measure R21 across the full star-forming disc of nine nearby, massive, star-forming spiral galaxies at 27 arcsec (∼1–2 kpc) resolution. We find an average R21 = 0.64 ± 0.09 when we take the luminosity-weighted mean of all individual galaxies. This result is consistent with the mean ratio for disc galaxies that we derive from single-pointing measurements in the literature, $R_{\rm 21, lit}~=~0.59^{+0.18}_{-0.09}$. The ratio shows weak radial variations compared to the point-to-point scatter in the data. In six out of nine targets, the central enhancement in R21 with respect to the galaxy-wide mean is of order of ${\sim}10{-}20{{\ \rm per\ cent}}$. We estimate an azimuthal scatter of ∼20 per cent in R21 at fixed galactocentric radius but this measurement is limited by our comparatively coarse resolution of 1.5 kpc. We find mild correlations between R21 and carbon monoxide (CO) brightness temperature, infrared (IR) intensity, 70–160 µm ratio, and IR-to-CO ratio. All correlations indicate that R21 increases with gas surface density, star formation rate surface density, and the interstellar radiation field. 
    more » « less
  5. null (Ed.)
    ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and mass for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is <0.1 dex at z < 1.5 but increases to ∼0.3 dex at higher redshift. The results are in good agreement with those obtained in blank fields. We evaluate the uncertainties associated with the choice of lens model by comparing size measurements using five different and publicly available models, finding the choice of lens model leads to a 3.7 per cent uncertainty of the median value, and ∼25  per cent scatter for individual galaxies. Our work demonstrates the use of strong lensing magnification to boost resolution does not introduce significant uncertainties in this kind of work, and paves the way for wholesale applications of the sophisticated lens reconstruction technique to higher redshifts and larger samples. 
    more » « less