skip to main content

Title: The stellar mass Fundamental Plane: the virial relation and a very thin plane for slow rotators
ABSTRACT Early-type galaxies – slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars – define a Fundamental Plane (FP) in the space of half-light radius Re, enclosed surface brightness Ie, and velocity dispersion σe. Since Ie and σe are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which Ie and σe can be used to estimate sizes Re. We show that: (1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in Re is $\sim 16{{\ \rm per\ cent}}$, of which only $\sim 9{{\ \rm per\ cent}}$ is intrinsic. Removing galaxies with M* < 1011 M⊙ further reduces the observed scatter to $\sim 13{{\ \rm per\ cent}}$ ($\sim 4{{\ \rm per\ cent}}$ intrinsic). The observed scatter increases to $\sim 25{{\ \rm per\ cent}}$ usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only 5 per cent orthogonal to the plane. (2) The structure within the FP is most easily understood as arising from more » the fact that Ie and σe are nearly independent, whereas the Re−Ie and Re−σe correlations are nearly equal and opposite. (3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be ‘tilted’. If we multiply Ie by the global stellar mass-to-light ratio M*/L and we account for non-homology across the population by using Sérsic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for M*/L gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
5148 to 5160
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values.more »We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.« less
  2. ABSTRACT Both the CO(2–1) and CO(1–0) lines are used to trace the mass of molecular gas in galaxies. Translating the molecular gas mass estimates between studies using different lines requires a good understanding of the behaviour of the CO(2–1)-to-CO(1–0) ratio, R21. We compare new, high-quality CO(1–0) data from the IRAM 30-m EMIR MultiLine Probe of the ISM Regulating Galaxy Evolution survey to the latest available CO(2–1) maps from HERA CO-Line Extragalactic Survey, Physics at High Angular resolution in Nearby Galaxies-ALMA, and a new IRAM 30-m M51 Large Program. This allows us to measure R21 across the full star-forming disc of nine nearby, massive, star-forming spiral galaxies at 27 arcsec (∼1–2 kpc) resolution. We find an average R21 = 0.64 ± 0.09 when we take the luminosity-weighted mean of all individual galaxies. This result is consistent with the mean ratio for disc galaxies that we derive from single-pointing measurements in the literature, $R_{\rm 21, lit}~=~0.59^{+0.18}_{-0.09}$. The ratio shows weak radial variations compared to the point-to-point scatter in the data. In six out of nine targets, the central enhancement in R21 with respect to the galaxy-wide mean is of order of ${\sim}10{-}20{{\ \rm per\ cent}}$. We estimate an azimuthal scatter of ∼20 per cent in R21 at fixedmore »galactocentric radius but this measurement is limited by our comparatively coarse resolution of 1.5 kpc. We find mild correlations between R21 and carbon monoxide (CO) brightness temperature, infrared (IR) intensity, 70–160 µm ratio, and IR-to-CO ratio. All correlations indicate that R21 increases with gas surface density, star formation rate surface density, and the interstellar radiation field.« less
  3. ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and mass for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is <0.1 dex at z < 1.5 but increases to ∼0.3 dex at higher redshift. The results are in good agreement with those obtained in blank fields. We evaluate the uncertainties associated with the choice of lens model by comparing size measurements using five different and publicly available models, finding the choice ofmore »lens model leads to a 3.7 per cent uncertainty of the median value, and ∼25  per cent scatter for individual galaxies. Our work demonstrates the use of strong lensing magnification to boost resolution does not introduce significant uncertainties in this kind of work, and paves the way for wholesale applications of the sophisticated lens reconstruction technique to higher redshifts and larger samples.« less
  4. ABSTRACT We present estimates of stellar population (SP) gradients from stacked spectra of slow rotator (SR) and fast rotator (SR) elliptical galaxies from the MaNGA-DR15 survey. We find that (1) FRs are ∼5 Gyr younger, more metal rich, less α-enhanced and smaller than SRs of the same luminosity Lr and central velocity dispersion σ0. This explains why when one combines SRs and FRs, objects which are small for their Lr and σ0 tend to be younger. Their SP gradients are also different. (2) Ignoring the FR/SR dichotomy leads one to conclude that compact galaxies are older than their larger counterparts of the same mass, even though almost the opposite is true for FRs and SRs individually. (3) SRs with σ0 ≤ 250 km s−1 are remarkably homogeneous within ∼Re: they are old, α-enhanced, and only slightly supersolar in metallicity. These SRs show no gradients in age and M*/Lr, negative gradients in metallicity, and slightly positive gradients in [α/Fe] (the latter are model dependent). SRs with σ0 ≥ 250 km s−1 are slightly younger and more metal rich, contradicting previous work suggesting that age increases with σ0. They also show larger M*/Lr gradients. (4) Self-consistently accounting for M*/L gradients yields Mdyn ≈ M* because gradients reducemore »Mdyn by ∼0.2 dex while only slightly increasing the M* inferred using a Kroupa (not Salpeter) initial mass function. (5) The SR population starts to dominate the counts above $M_*\ge 3\times 10^{11}\, \mathrm{M}_\odot$; this is the same scale at which the size–mass correlation and other scaling relations change. Our results support the finding that this is an important mass scale that correlates with the environment and above which mergers matter.« less
  5. ABSTRACT We study the role of group infall in the assembly and dynamics of galaxy clusters in ΛCDM. We select 10 clusters with virial mass M200 ∼ 1014 $\rm M_\odot$ from the cosmological hydrodynamical simulation Illustris and follow their galaxies with stellar mass M⋆ ≥ 1.5 × 108 $\rm M_\odot$. A median of ${\sim}38{{\ \rm per\ cent}}$ of surviving galaxies at z = 0 is accreted as part of groups and did not infall directly from the field, albeit with significant cluster-to-cluster scatter. The evolution of these galaxy associations is quick, with observational signatures of their common origin eroding rapidly in 1–3 Gyr after infall. Substructure plays a dominant role in fostering the conditions for galaxy mergers to happen, even within the cluster environment. Integrated over time, we identify (per cluster) an average of 17 ± 9 mergers that occur in infalling galaxy associations, of which 7 ± 3 occur well within the virial radius of their cluster hosts. The number of mergers shows large dispersion from cluster to cluster, with our most massive system having 42 mergers above our mass cut-off. These mergers, which are typically gas rich for dwarfs and a combination of gas rich and gas poor for M⋆ ∼ 1011 $\rm M_\odot$, may contribute significantly within ΛCDM tomore »the formation of specific morphologies, such as lenticulars (S0) and blue compact dwarfs in groups and clusters.« less