IntroductionIntrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) result in selective respiratory (e.g., phrenic) motor neuron death and mimics aspects of motor neuron disease [(e.g., amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)], such as breathing deficits. This rodent model allows us to study the impact motor neuron death has on the output of surviving phrenic motor neurons as well as the compensatory mechanisms that are recruited. Microglial density in the phrenic motor nucleus as well as cervical gene expression of markers associated with inflammation (e.g., tumor necrosis factor α; TNF-α) are increased following CTB-SAP-induced phrenic motor neuron death, and ketoprofen (nonsteroidal anti-inflammatory drug) delivery attenuated phrenic long-term facilitation (pLTF) in 7 day (d) CTB-SAP rats but enhanced pLTF in 28d CTB-SAP rats. MethodsHere, we worked to determine the impact of TNF-α in the phrenic motor nucleus by: 1) quantifying TNFR1 (a high affinity transmembrane receptor for TNF-α) expression; 2) investigating astrocytes (glial cells known to release TNF-α) by performing a morphological analysis in the phrenic motor nucleus; and 3) determining whether acute TNFR1 inhibition differentially affects phrenic plasticity over the course of CTB-SAP-induced motor neuron loss by delivering an inhibitor for TNF-α receptor 1 (sTNFR1i) in 7d and 28d male CTB-SAP and control rats. ResultsResults revealed that TNFR1 expression was increased on phrenic motor neurons of 28d CTB-SAP rats (p< 0.05), and that astrocytes were increased and exhibited reactive morphology (consistent with an activated phenotype;p< 0.05) in the phrenic motor nucleus of CTB-SAP rats. Additionally, we found that pLTF was attenuated in 7d CTB-SAP rats but enhanced in 28d CTB-SAP rats (p< 0.05) following intrathecal sTNFR1i delivery. ConclusionThis work suggests that we could harness TNFR1 as a potential therapeutic agent in CTB-SAP rats and patients with respiratory motor neuron disease by increasing compensatory plasticity in surviving neurons to improve phrenic motor neuron function and breathing as well as quality of life. Future studies will focus on microglial and astrocytic cytokine release, the role they play in the differential mechanisms of pLTF utilized by 7d and 28d CTB-SAP rats, and potential therapies that target them.
more »
« less
Role of deep breaths in ultrasonic vocal production of Sprague-Dawley rats
Deep breaths are one of three breathing patterns in rodents characterized by an increased tidal volume. While humans incorporate deep breaths into vocal behavior, it was unknown whether nonhuman mammals use deep breaths for vocal production. We have utilized subglottal pressure recordings in awake, spontaneously behaving male Sprague-Dawley rats in five contexts: sleep, rest, noxious stimulation, exposure to a female in estrus, and exposure to an unknown male. Deep breaths were produced at rates ranging between 17.5 and 90.3 deep breaths per hour. While overall breathing and vocal rates were higher in social and noxious contexts, the rate of deep breaths was only increased during the male’s interaction with a female. Results also inform our understanding of vocal-respiratory integration in rats. The rate of deep breaths that were associated with a vocalization during the exhalation phase increased with vocal activity. The proportion of deep breaths that were associated with a vocalization (on average 22%) was similar to the proportion of sniffing or eupnea breaths that contain a vocalization. Therefore, vocal motor patterns appear to be entrained to the prevailing breathing rhythm, i.e., vocalization uses the available breathing pattern rather than recruiting a specific breathing pattern. Furthermore, the pattern of a deep breath was different when it was associated with a vocalization, suggesting that motor planning occurs. Finally, deep breaths are a source for acoustic variation; for example, call duration and fundamental frequency modulation were both larger in 22-kHz calls produced following a deep inhalation. NEW & NOTEWORTHY The emission of a long, deep, audible breath can express various emotions. The investigation of deep breaths, also known as sighing, in a nonhuman mammal demonstrated the occasional use of deep breaths for vocal production. Similar to the human equivalent, acoustic features of a deep breath vocalization are characteristic.
more »
« less
- Award ID(s):
- 1754332
- PAR ID:
- 10157649
- Date Published:
- Journal Name:
- Journal of Neurophysiology
- Volume:
- 123
- Issue:
- 3
- ISSN:
- 0022-3077
- Page Range / eLocation ID:
- 966 to 979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The neuropeptide, arginine vasopressin (AVP), has been implicated in social communication across a diverse array of species. Many rodents communicate basic behavioral states with negative versus positive valence through high-pitched vocalizations above the human hearing range (ultrasonic vocalizations; USVs). Previous studies have found that Brattleboro (Bratt) rats, which have a mutation in the Avp gene, exhibit deficits in their USVs from the early postnatal period through adolescence, but the magnitude of this effect appears to decrease from the juvenile to adolescent phase. The present study tested whether Bratt rats continue to exhibit USV deficits in adulthood. USVs of adult male and female Bratt and wild type (WT) rats were recorded in two contexts: a novel environment (empty arena) and a social context (arena filled with bedding soiled by same-sex conspecifics). The number, frequency, and duration of 50 kHz USVs were quantified by DeepSqueak after validation with manual scoring. Twenty-two kHz measures were quantified by manual scoring because DeepSqueak failed to accurately detect USVs in this frequency range. Adult Bratt rats did not exhibit deficits in the number of 50 kHz USVs: male Bratt rats emitted similar 50 kHz USVs as male WT rats, whereas female Bratt rats emitted more USVs than female WT rats. USV frequency and duration were altered in adult Bratt rats, but in a context-dependent manner. Twenty-two kHz USVs were less affected by the Bratt mutation. The present study demonstrates how chronic AVP deficiency impacts social communication across the lifespan. The present findings reveal a complex role for AVP in vocal communication, whereby disruption to the Avp gene leads to sex-, context-, and developmental phase-specific effects on the quantity and spectrotemporal characteristics of rat USVs.more » « less
-
This paper presents the use of a Restricted Boltzmann Machine to develop an unsupervised machine learning approach to process breathing sounds to predict breathing rates and depth or length of breaths. Breath detection and monitoring has been the subject of several studies involving the health monitoring of patients on respirators. We are proposing to extend the use of non-invasive techniques to provide measures of physical exhaustion or activity. The level of activity or exhaustion could be used to prevent accidents or manage exposure to physically demanding environments such as firefighting or working underwater.more » « less
-
Abstract For many animal species, vocal communication is a critical social behavior and often a necessary component of reproductive success. Additionally, vocalizations are often demanding motor acts. Wanting to know whether a specific molecular toolkit might be required for vocalization, we used RNA‐sequencing to investigate neural gene expression underlying the performance of an extreme vocal behavior, the courtship hum of the plainfin midshipman fish (Porichthys notatus). Single hums can last up to 2 h and may be repeated throughout an evening of courtship activity. We asked whether vocal behavioral states are associated with specific gene expression signatures in key brain regions that regulate vocalization by comparing transcript expression levels in humming versus non‐humming males. We find that the circadian‐related genesperiod3andClockare significantly upregulated in the vocal motor nucleus and preoptic area‐anterior hypothalamus, respectively, in humming compared with non‐humming males, indicating that internal circadian clocks may differ between these divergent behavioral states. In addition, we identify suites of differentially expressed genes related to synaptic transmission, ion channels and transport, neuropeptide and hormone signaling, and metabolism and antioxidant activity that together may support the neural and energetic demands of humming behavior. Comparisons of transcript expression across regions stress regional differences in brain gene expression, while also showing coordinated gene regulation in the vocal motor circuit in preparation for courtship behavior. These results underscore the role of differential gene expression in shifts between behavioral states, in this case neuroendocrine, motor and circadian control of courtship vocalization.more » « less
-
Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed. Social behaviors and c-Fos expression in the serotonergic dorsal raphe nucleus (DRN) were then measured in subjects following the social interactions. Relative to social housing, postweaning isolation led to a decrease in the density of neurons double-labeled for tryptophan hydroxylase and c-Fos in the dorsomedial subdivision of the DRN, regardless of sex. Vocal and non-vocal behaviors were also affected by isolation. In interactions with isolated males, both ultrasonic vocalization (USVs) and broadband vocalizations (squeaks) increased in conjunction with greater male investigation of females. Neural and behavioral measures also correlated with each other. In the isolated male group, the density of double-labeled neurons in the dorsomedial DRN was negatively correlated with USV production and positively correlated with a principal component of non-vocal behavior corresponding to greater defensive kicking by females and less investigation and mounting behavior. This correlation was reversed in direction for socially housed males, and for isolated males versus isolated females. These findings confirm that the dynamics of social interactions are reflected in c-Fos activation in the dorsomedial DRN, and suggest an altered responsiveness of serotonergic neurons to social interaction following social isolation in males, in parallel with an altered male response to female cues.more » « less
An official website of the United States government

