Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Purpose The larynx plays a role in swallowing, respiration, and voice production. All three functions change during ontogeny. We investigated ontogenetic shape changes using a mouse model to inform our understanding of how laryngeal form and function are integrated. We understand the characterization of developmental changes to larynx anatomy as a critical step toward using rodent models to study human vocal communication disorders. Method Contrast-enhanced micro-computed tomography image stacks were used to generate three-dimensional reconstructions of the CD-1 mouse ( Mus musculus ) laryngeal cartilaginous framework. Then, we quantified size and shape in four age groups: pups, weanlings, young, and old adults using a combination of landmark and linear morphometrics. We analyzed postnatal patterns of growth and shape in the laryngeal skeleton, as well as morphological integration among four laryngeal cartilages using geometric morphometric methods. Acoustic analysis of vocal patterns was employed to investigate morphological and functional integration. Results Four cartilages scaled with negative allometry on body mass. Additionally, thyroid, arytenoid, and epiglottic cartilages, but not the cricoid cartilage, showed shape change associated with developmental age. A test for modularity between the four cartilages suggests greater independence of thyroid cartilage shape, hinting at the importance of embryological origin during postnatal development. Finally, mean fundamental frequency, but not fundamental frequency range, varied predictably with size. Conclusion In a mouse model, the four main laryngeal cartilages do not develop uniformly throughout the first 12 months of life. High-dimensional shape analysis effectively quantified variation in shape across development and in relation to size, as well as clarifying patterns of covariation in shape among cartilages and possibly the ventral pouch. Supplemental Material https://doi.org/10.23641/asha.12735917more » « less
-
Elaborate animal communication displays are often accompanied by morphological and physiological innovations. In rodents, acoustic signals used in reproductive contexts are produced by two distinct mechanisms, but the underlying anatomy that facilitates such divergence is poorly understood. ‘Audible’ vocalizations with spectral properties between 500 Hz and 16 kHz are thought to be produced by flow-induced vocal fold vibrations, whereas ‘ultrasonic’ vocalizations with fundamental frequencies above 19 kHz are produced by an aerodynamic whistle mechanism. Baiomyine mice (genus Baiomys and Scotinomys) produce complex frequency modulated songs that span these traditional distinctions and represent important models to understand the evolution of signal elaboration. We combined acoustic analyses of spontaneously vocalizing northern pygmy mice (B. taylori) mice in air and light gas atmosphere with morphometric analyses of their vocal apparatus to infer the mechanism of vocal production. Increased fundamental frequencies in heliox indicated that pygmy mouse songs are produced by an aerodynamic whistle mechanism supported by the presence of a ventral pouch and alar cartilage. Comparative analyses of the larynx and ventral pouch size among four additional ultrasonic whistle-producing rodents indicate that the unusually low ‘ultrasonic’ frequencies (relative to body size) of pygmy mice songs are associated with an enlarged ventral pouch. Additionally, mice produced shorter syllables while maintaining intersyllable interval duration, thereby increasing syllable repetition rates. We conclude that while laryngeal anatomy sets the foundation for vocal frequency range, variation and adjustment of central vocal motor control programs fine tunes spectral and temporal characters to promote acoustic diversity within and between species.more » « less
-
Deep breaths are one of three breathing patterns in rodents characterized by an increased tidal volume. While humans incorporate deep breaths into vocal behavior, it was unknown whether nonhuman mammals use deep breaths for vocal production. We have utilized subglottal pressure recordings in awake, spontaneously behaving male Sprague-Dawley rats in five contexts: sleep, rest, noxious stimulation, exposure to a female in estrus, and exposure to an unknown male. Deep breaths were produced at rates ranging between 17.5 and 90.3 deep breaths per hour. While overall breathing and vocal rates were higher in social and noxious contexts, the rate of deep breaths was only increased during the male’s interaction with a female. Results also inform our understanding of vocal-respiratory integration in rats. The rate of deep breaths that were associated with a vocalization during the exhalation phase increased with vocal activity. The proportion of deep breaths that were associated with a vocalization (on average 22%) was similar to the proportion of sniffing or eupnea breaths that contain a vocalization. Therefore, vocal motor patterns appear to be entrained to the prevailing breathing rhythm, i.e., vocalization uses the available breathing pattern rather than recruiting a specific breathing pattern. Furthermore, the pattern of a deep breath was different when it was associated with a vocalization, suggesting that motor planning occurs. Finally, deep breaths are a source for acoustic variation; for example, call duration and fundamental frequency modulation were both larger in 22-kHz calls produced following a deep inhalation. NEW & NOTEWORTHY The emission of a long, deep, audible breath can express various emotions. The investigation of deep breaths, also known as sighing, in a nonhuman mammal demonstrated the occasional use of deep breaths for vocal production. Similar to the human equivalent, acoustic features of a deep breath vocalization are characteristic.more » « less
-
Diversification of animal vocalizations plays a key role in behavioral evolution and speciation. Vocal organ morphology represents an important source of acoustic variation, yet its small size, complex shape, and absence of homologous landmarks pose major challenges to comparative analyses. Here, we use a geometric morphometric approach based on geometrically homologous landmarks to quantify shape variation of laryngeal cartilages of four rodent genera representing three families. Reconstructed cartilages of the larynx from contrast-enhanced micro-CT images were quantified by variable numbers of three-dimensional landmarks placed on structural margins and major surfaces. Landmark sets were superimposed using generalized Procrustes analysis prior to statistical analysis. Correlations among pairwise Procrustes distances were used to identify the minimum number of landmarks necessary to fully characterize shape variation. We found that the five species occupy distinct positions in morphospace, with variation explained in part by phylogeny, body size, and differences in vocal production mechanisms. Our findings provide a foundation for quantifying the contribution of vocal organ morphology to acoustic diversification.more » « less
An official website of the United States government
