skip to main content


Title: Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Acetylene (C 2 H 2 ) and D2-acetylene (C 2 D 2 ) Ices Exposed to Ionizing Radiation via Ultraviolet–Visible Spectroscopy, Infrared Spectroscopy, and Reflectron Time-of-flight Mass Spectrometry
Award ID(s):
1800975
NSF-PAR ID:
10157672
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
889
Issue:
1
ISSN:
1538-4357
Page Range / eLocation ID:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Porous materials with open metal sites have been investigated to separate various gas mixtures. However, open metal sites show the limitation in the separation of some challenging gas mixtures, such as C2H2/CO2. Herein, we propose a new type of ultra‐strong C2H2nano‐trap based on multiple binding interactions to efficiently capture C2H2molecules and separate C2H2/CO2mixture. The ultra‐strong acetylene nano‐trap shows a benchmarkQstof 79.1 kJ mol−1for C2H2, a record high pure C2H2uptake of 2.54 mmol g−1at 1×10−2 bar, and the highest C2H2/CO2selectivity (53.6), making it as a new benchmark material for the capture of C2H2and the separation of C2H2/CO2. The locations of C2H2molecules within the MOF‐based nanotrap have been visualized by the in situ single‐crystal X‐ray diffraction studies, which also identify the multiple binding sites accountable for the strong interactions with C2H2.

     
    more » « less
  2. Abstract

    Porous materials with open metal sites have been investigated to separate various gas mixtures. However, open metal sites show the limitation in the separation of some challenging gas mixtures, such as C2H2/CO2. Herein, we propose a new type of ultra‐strong C2H2nano‐trap based on multiple binding interactions to efficiently capture C2H2molecules and separate C2H2/CO2mixture. The ultra‐strong acetylene nano‐trap shows a benchmarkQstof 79.1 kJ mol−1for C2H2, a record high pure C2H2uptake of 2.54 mmol g−1at 1×10−2 bar, and the highest C2H2/CO2selectivity (53.6), making it as a new benchmark material for the capture of C2H2and the separation of C2H2/CO2. The locations of C2H2molecules within the MOF‐based nanotrap have been visualized by the in situ single‐crystal X‐ray diffraction studies, which also identify the multiple binding sites accountable for the strong interactions with C2H2.

     
    more » « less
  3. For more than half a century, pericyclic reactions have played an important role in advancing our fundamental understanding of cycloadditions, sigmatropic shifts, group transfer reactions, and electrocyclization reactions. However, the fundamental mechanisms of photochemically activated cheletropic reactions have remained contentious. Here we report on the simplest cheletropic reaction: the [2+1] addition of ground state 18 O-carbon monoxide (C 18 O, X 1 Σ + ) to D2-acetylene (C 2 D 2 ) photochemically excited to the first excited triplet (T1), second excited triplet (T2), and first excited singlet state (S1) at 5 K, leading to the formation of D2- 18 O-cyclopropenone (c-C 3 D 2 18 O). Supported by quantum-chemical calculations, our investigation provides persuasive testimony on stepwise cheletropic reaction pathways to cyclopropenone via excited state dynamics involving the T2 (non-adiabatic) and S1 state (adiabatic) of acetylene at 5 K, while the T1 state energetically favors an intermediate structure that directly dissociates after relaxing to the ground state. The agreement between experiments in low temperature ices and the excited state calculations signifies how photolysis experiments coupled with theoretical calculations can untangle polyatomic reactions with relevance to fundamental physical organic chemistry at the molecular level, thus affording a versatile strategy to unravel exotic non-equilibrium chemistries in cyclic, aromatic organics. Distinct from traditional radical–radical pathways leading to organic molecules on ice-coated interstellar nanoparticles (interstellar grains) in cold molecular clouds and star-forming regions, the photolytic formation of cyclopropenone as presented changes the perception of how we explain the formation of complex organics in the interstellar medium eventually leading to the molecular precursors of biorelevant molecules. 
    more » « less