ABSTRACT We present the photometric data from TESS for two known ZZ Ceti stars, PG 1541 + 651 and BPM 31594. Before TESS, both objects only had observations from short runs from ground-based facilities, with three and one period detected, respectively. The TESS data allowed the detection of multiple periodicities, 12 for PG 1541 + 651, and six for BPM 31594, which enables us to perform a detailed asteroseismological study. For both objects, we found a representative asteroseismic model with canonical stellar mass ∼0.61M⊙ and thick hydrogen envelopes, thicker than 10−5.3M*. The detection of triplets in the Fourier transform also allowed us to estimate mean rotation periods, being ∼22 h for PG 1541 + 651 and 11.6 h for BPM 31594, which is consistent with a range of values reported for other ZZ Ceti stars.
more »
« less
About the existence of warm H-rich pulsating white dwarfs
Context. The possible existence of warm ( T eff ∼ 19 000 K) pulsating DA white dwarf (WD) stars, hotter than ZZ Ceti stars, was predicted in theoretical studies more than 30 yr ago. These studies reported the occurrence of g -mode pulsational instabilities due to the κ mechanism acting in the partial ionization zone of He below the H envelope in models of DA WDs with very thin H envelopes ( M H / M ⋆ ≲ 10 −10 ). However, to date, no pulsating warm DA WD has been discovered, despite the varied theoretical and observational evidence suggesting that a fraction of WDs should be formed with a range of very low H content. Aims. We re-examine the pulsational predictions for such WDs on the basis of new full evolutionary sequences. We analyze all the warm DAs observed by the TESS satellite up to Sector 9 in order to search for the possible pulsational signal. Methods. We computed WD evolutionary sequences of masses 0.58 and 0.80 M ⊙ with H content in the range −14.5 ≲ log( M H / M ⋆ )≲ − 10, appropriate for the study of pulsational instability of warm DA WDs. Initial models were extracted from progenitors that were evolved through very late thermal pulses on the early cooling branch. We use LPCODE stellar code into which we have incorporated a new full-implicit treatment of time-dependent element diffusion to precisely model the H–He transition zone in evolving WD models with very low H content. The nonadiabatic pulsations of our warm DA WD models were computed in the effective temperature range of 30 000 − 10 000 K, focusing on ℓ = 1 g modes with periods in the range 50 − 1500 s. Results. We find that traces of H surviving the very late thermal pulse float to the surface, eventually forming thin, growing pure H envelopes and rather extended H–He transition zones. We find that such extended transition zones inhibit the excitation of g modes due to partial ionization of He below the H envelope. Only in the cases where the H–He transition is assumed much more abrupt than predicted by diffusion do models exhibit pulsational instability. In this case, instabilities are found only in WD models with H envelopes in the range of −14.5 ≲ log( M H / M ⋆ )≲ − 10 and at effective temperatures higher than those typical for ZZ Ceti stars, in agreement with previous studies. None of the 36 warm DAs observed so far by TESS satellite are found to pulsate. Conclusions. Our study suggests that the nondetection of pulsating warm DAs, if WDs with very thin H envelopes do exist, could be attributed to the presence of a smooth and extended H–He transition zone. This could be considered as indirect proof that element diffusion indeed operates in the interior of WDs.
more »
« less
- Award ID(s):
- 1903828
- PAR ID:
- 10157681
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 633
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The discovery of pulsations in ultramassive (UM) white dwarfs (WDs) can help to probe their interiors and unveil their core composition and crystallized mass fraction through asteroseismic techniques. To date, the richest pulsating UM WD known is BPM 37093 with 8 modes detected, for which detailed asteroseismic analysis has been performed in the past. In this work, we report the discovery of 19 pulsation modes in the UM WD star WD J0135+5722, making it the richest pulsating hydrogen-atmosphere UM WD known to date. This object exhibits multiperiodic luminosity variations with periods ranging from 137 to 1345 s, typical of pulsating WDs in the ZZ Ceti instability strip, which is centered atTeff ∼ 12,000 K. We estimate the stellar mass of WD J0135+5722 by different methods, resulting inM⋆ ∼ 1.12–1.14M⊙if the star’s core is made of oxygen and neon orM⋆ ∼ 1.14–1.15M⊙if the star hosts a carbon oxygen core. Future analysis of the star periods could shed light on the core chemical composition through asteroseismology.more » « less
-
ABSTRACT Blue large-amplitude pulsators (BLAPs) make up a rare class of hot pulsating stars with effective temperatures of ≈30 000 K and surface gravities of 4.0–5.0 dex (cgs). The evolutionary origin and current status of BLAPs is not well understood, largely based on a lack of spectroscopic observations and no available mass constraints. However, several theoretical models have been proposed that reproduce their observed properties, including studies that identify them as pulsating helium-core pre-white dwarfs (He-core pre-WDs). We present here follow-up high-speed photometry and phase-resolved spectroscopy of one of the original 14 BLAPs, OGLE-BLAP-009, discovered during the Optical Gravitational Lensing Experiment. We aim to explore its pulsation characteristics and determine stellar properties such as mass and radius in order to test the consistency of these results with He-core pre-WD models. Using the mean atmospheric parameters found using spectroscopy, we fit a spectral energy distribution to obtain a preliminary estimate of the radius, luminosity, and mass by making use of the Gaia parallax. We then compare the consistency of these results to He-core pre-WD models generated using Modules for Experiments in Stellar Astrophysics, with predicted pulsation periods implemented using gyre. We find that our mass constraints are in agreement with a low-mass He-core pre-WD of ≈0.30 M⊙.more » « less
-
null (Ed.)Context. We present our findings on 18 previously known ZZ Ceti stars observed by the TESS space telescope in 120 s cadence mode during the survey observation of the southern ecliptic hemisphere. Aims. We focus on the frequency analysis of the space-based observations, comparing the results with findings of previous ground-based measurements. The frequencies detected by the TESS observations can serve as inputs for future asteroseismic analyses. Methods. We performed standard pre-whitening of the data sets to derive the possible pulsation frequencies of the different targets. In some cases, we fit Lorentzians to the frequency groups that emerged as the result of short-term amplitude or phase variations that occurred during the TESS observations. Results. We detected more than 40 pulsation frequencies in seven ZZ Ceti stars observed in the 120 s cadence by TESS, with precision better than 0.1 μ Hz. We found that HE 0532−5605 may be a new outbursting ZZ Ceti. Ten targets do not show any significant pulsation frequencies in their Fourier transforms, due to a combination of their intrinsic faintness and/or crowding on the large TESS pixels. We also detected possible amplitude or phase variations during the TESS observations in some cases. Such behaviour in these targets was not previously identified from ground-based observations.more » « less
-
With the precision now afforded by modern space-based photometric observations from the retired K2 and current TESS missions, the effects of general relativity (GR) may be detectable in the light curves of pulsating white dwarfs (WDs). Almost all WD models are calculated using a Newtonian description of gravity and hydrodynamics. To determine if the inclusion of GR leads to observable effects, we used idealized models of compact stars and made side-by-side comparisons of mode periods computed using a: (i) Newtonian and (ii) GR description of the equilibrium structure and nonradial pulsations. For application to WDs, it is only necessary to include the first post- Newtonian (1PN) approximation to GR. The mathematical nature of the linear nonradial pulsation problem is then qualitatively unchanged and the GR corrections can be written as extensions of the classic Dziembowski equations. As such, GR effects might easily be included in existing asteroseismology codes. The idealized stellar models are (i) 1PN relativistic polytropes and (ii) stars with a cold degenerate electron equation of state featuring a near-surface chemical transition from μe = 2 to μe = 1, simulating a surface hydrogen layer. A comparison of Newtonian and 1PN normal mode periods reveals fractional differences in the order of the surface gravitational redshift z. For a typical WD, this fractional difference is ∼10−4 and is greater than the period uncertainty σΠ/Π of many WD pulsation modes observed by TESS. Consistent theoretical modeling of periods observed in these stars should, in principle, include GR effects to 1PN order.more » « less
An official website of the United States government

