Abstract We seek signatures of the current experimental 12 C α , γ 16 O reaction rate probability distribution function in the pulsation periods of carbon–oxygen white dwarf (WD) models. We find that adiabatic g-modes trapped by the interior carbon-rich layer offer potentially useful signatures of this reaction rate probability distribution function. Probing the carbon-rich region is relevant because it forms during the evolution of low-mass stars under radiative helium-burning conditions, mitigating the impact of convective mixing processes. We make direct quantitative connections between the pulsation periods of the identified trapped g-modes in variable WD models and the current experimental 12 C α , γ 16 O reaction rate probability distribution function. We find an average spread in relative period shifts of Δ P / P ≃ ±2% for the identified trapped g-modes over the ±3 σ uncertainty in the 12 C α , γ 16 O reaction rate probability distribution function—across the effective temperature range of observed DAV and DBV WDs and for different WD masses, helium shell masses, and hydrogen shell masses. The g-mode pulsation periods of observed WDs are typically given to six to seven significant figures of precision. This suggests that an astrophysical constraint on the 12 C α , γ 16 O reaction rate could, in principle, be extractable from the period spectrum of observed variable WDs.
more »
« less
Relativistic Corrections in White Dwarf Asteroseismology
With the precision now afforded by modern space-based photometric observations from the retired K2 and current TESS missions, the effects of general relativity (GR) may be detectable in the light curves of pulsating white dwarfs (WDs). Almost all WD models are calculated using a Newtonian description of gravity and hydrodynamics. To determine if the inclusion of GR leads to observable effects, we used idealized models of compact stars and made side-by-side comparisons of mode periods computed using a: (i) Newtonian and (ii) GR description of the equilibrium structure and nonradial pulsations. For application to WDs, it is only necessary to include the first post- Newtonian (1PN) approximation to GR. The mathematical nature of the linear nonradial pulsation problem is then qualitatively unchanged and the GR corrections can be written as extensions of the classic Dziembowski equations. As such, GR effects might easily be included in existing asteroseismology codes. The idealized stellar models are (i) 1PN relativistic polytropes and (ii) stars with a cold degenerate electron equation of state featuring a near-surface chemical transition from μe = 2 to μe = 1, simulating a surface hydrogen layer. A comparison of Newtonian and 1PN normal mode periods reveals fractional differences in the order of the surface gravitational redshift z. For a typical WD, this fractional difference is ∼10−4 and is greater than the period uncertainty σΠ/Π of many WD pulsation modes observed by TESS. Consistent theoretical modeling of periods observed in these stars should, in principle, include GR effects to 1PN order.
more »
« less
- Award ID(s):
- 2110335
- PAR ID:
- 10544982
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 952
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 87
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. The possible existence of warm ( T eff ∼ 19 000 K) pulsating DA white dwarf (WD) stars, hotter than ZZ Ceti stars, was predicted in theoretical studies more than 30 yr ago. These studies reported the occurrence of g -mode pulsational instabilities due to the κ mechanism acting in the partial ionization zone of He below the H envelope in models of DA WDs with very thin H envelopes ( M H / M ⋆ ≲ 10 −10 ). However, to date, no pulsating warm DA WD has been discovered, despite the varied theoretical and observational evidence suggesting that a fraction of WDs should be formed with a range of very low H content. Aims. We re-examine the pulsational predictions for such WDs on the basis of new full evolutionary sequences. We analyze all the warm DAs observed by the TESS satellite up to Sector 9 in order to search for the possible pulsational signal. Methods. We computed WD evolutionary sequences of masses 0.58 and 0.80 M ⊙ with H content in the range −14.5 ≲ log( M H / M ⋆ )≲ − 10, appropriate for the study of pulsational instability of warm DA WDs. Initial models were extracted from progenitors that were evolved through very late thermal pulses on the early cooling branch. We use LPCODE stellar code into which we have incorporated a new full-implicit treatment of time-dependent element diffusion to precisely model the H–He transition zone in evolving WD models with very low H content. The nonadiabatic pulsations of our warm DA WD models were computed in the effective temperature range of 30 000 − 10 000 K, focusing on ℓ = 1 g modes with periods in the range 50 − 1500 s. Results. We find that traces of H surviving the very late thermal pulse float to the surface, eventually forming thin, growing pure H envelopes and rather extended H–He transition zones. We find that such extended transition zones inhibit the excitation of g modes due to partial ionization of He below the H envelope. Only in the cases where the H–He transition is assumed much more abrupt than predicted by diffusion do models exhibit pulsational instability. In this case, instabilities are found only in WD models with H envelopes in the range of −14.5 ≲ log( M H / M ⋆ )≲ − 10 and at effective temperatures higher than those typical for ZZ Ceti stars, in agreement with previous studies. None of the 36 warm DAs observed so far by TESS satellite are found to pulsate. Conclusions. Our study suggests that the nondetection of pulsating warm DAs, if WDs with very thin H envelopes do exist, could be attributed to the presence of a smooth and extended H–He transition zone. This could be considered as indirect proof that element diffusion indeed operates in the interior of WDs.more » « less
-
Context. The TESS space mission has recently demonstrated its great potential to discover new pulsating white dwarf and pre-white dwarf stars, and to detect periodicities with high precision in already known white-dwarf pulsators. Aims. We report the discovery of two new pulsating He-rich atmosphere white dwarfs (DBVs) and present a detailed asteroseismological analysis of three already known DBV stars employing observations collected by the TESS mission along with ground-based data. Methods. We processed and analyzed TESS observations of the three already known DBV stars PG 1351+489 (TIC 471015205), EC 20058−5234 (TIC 101622737), and EC 04207−4748 (TIC 153708460), and the two new DBV pulsators WDJ152738.4−50207.4 (TIC 150808542) and WD 1708−871 (TIC 451533898), whose variability is reported for the first time in this paper. We also carried out a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models built considering the complete evolution of the progenitor stars. We constrained the stellar mass of three of these target stars by means of the observed period spacing, and derived a representative asteroseismological model using the individual periods, when possible. Results. We extracted frequencies from the TESS light curves of these DBV stars using a standard pre-whitening procedure to derive the potential pulsation frequencies. All the oscillation frequencies that we found are associated with g -mode pulsations with periods spanning from ∼190 s to ∼936 s. We find hints of rotation from frequency triplets in some of the targets, including the two new DBVs. For three targets, we find constant period spacings, which allowed us to infer their stellar masses and constrain the harmonic degree ℓ of the modes. We also performed period-to-period fit analyses and found an asteroseismological model for three targets, with stellar masses generally compatible with the spectroscopic masses. Obtaining seismological models allowed us to estimate the seismological distances and compare them with the precise astrometric distances measured with Gaia . We find a good agreement between the seismic and the astrometric distances for three stars (PG 1351+489, EC 20058-5234, and WD 1708-871); although, for the other two stars (EC 04207-4748 and WD J152738.4-50207), the discrepancies are substantial. Conclusions. The high-quality data from the TESS mission continue to provide important clues which can be used to help determine the internal structure of pulsating pre-white dwarf and white dwarf stars through the tools of asteroseismology.more » « less
-
Abstract Five self-lensing binaries (SLBs) have been discovered with Kepler light curves. They contain white dwarfs (WDs) in AU-scale orbits that gravitationally lens solar-type companions. Forming SLBs likely requires common envelope evolution when the WD progenitor is an AGB star and has a weakly bound envelope. No SLBs have yet been discovered with data from the Transiting Exoplanet Survey Satellite (TESS), which observes far more stars than Kepler did. Identifying self-lensing in TESS data is made challenging by the fact that TESS only observes most stars for ∼25 days at a time, so only a single lensing event will be observed for typical SLBs. TESS’s smaller aperture also makes it sensitive only to SLBs a factor of ∼100 brighter than those to which Kepler is sensitive. We demonstrate that TESS has nevertheless likely already observed ∼4 times more detectable SLBs than Kepler. We describe a search for non-repeating self-lensing signals in TESS light curves and present preliminary candidates for which spectroscopic follow-up is ongoing. We calculate the sensitivity of our search with injection and recovery tests on TESS and Kepler light curves. Based on the 5 SLBs discovered with Kepler light curves, we estimate that (1.1 ± 0.6)% of solar-type stars are orbited by WDs with periods of 100–1000 days. This implies a space density of AU-scale WD + main sequence (MS) binaries a factor of 20–100 larger than that of astrometrically identified WD + MS binaries with orbits in Gaia DR3. We conclude that the Gaia sample is still quite incomplete, mainly because WD + MS binaries can only be unambiguously identified as such for high mass ratios.more » « less
-
ABSTRACT Blue large-amplitude pulsators (BLAPs) make up a rare class of hot pulsating stars with effective temperatures of ≈30 000 K and surface gravities of 4.0–5.0 dex (cgs). The evolutionary origin and current status of BLAPs is not well understood, largely based on a lack of spectroscopic observations and no available mass constraints. However, several theoretical models have been proposed that reproduce their observed properties, including studies that identify them as pulsating helium-core pre-white dwarfs (He-core pre-WDs). We present here follow-up high-speed photometry and phase-resolved spectroscopy of one of the original 14 BLAPs, OGLE-BLAP-009, discovered during the Optical Gravitational Lensing Experiment. We aim to explore its pulsation characteristics and determine stellar properties such as mass and radius in order to test the consistency of these results with He-core pre-WD models. Using the mean atmospheric parameters found using spectroscopy, we fit a spectral energy distribution to obtain a preliminary estimate of the radius, luminosity, and mass by making use of the Gaia parallax. We then compare the consistency of these results to He-core pre-WD models generated using Modules for Experiments in Stellar Astrophysics, with predicted pulsation periods implemented using gyre. We find that our mass constraints are in agreement with a low-mass He-core pre-WD of ≈0.30 M⊙.more » « less
An official website of the United States government

