The interplay between magnetism and quantum effects has motivated several thermoelectric studies on iron‐telluride yet with little insight on the anomalous features in transport properties near magnetostructural transition temperature (≈70 K). A detailed investigation is carried out on Fe1.1Te by characterizing magnetic, heat capacity, galvanomagnetic, and thermoelectric transport properties to understand the electronic, magnetic, and structural origin of those anomalies. The magnetic susceptibility indicates a bicollinear stripe and short‐range ordering in the antiferromagnetic and paramagnetic domains, respectively. Hall conductivity and transverse magnetoresistance reveal a multicarrier transport impacted by spin fluctuations and magnons. Contributions from phonon‐drag and magnon‐drag are evaluated to understand the origin of the broad peak in antiferromagnetic thermopower. The peak at ≈50 K and the insignificant entropy contribution from the magnonic heat capacity support the phonon‐drag as the origin. The field‐dependent enhancement of thermal conductivity must be associated with field‐dependent spin‐phonon coupling modification. The field‐induced thermopower reduction can be attributed to the suppression of magnons or paramagnons, as evidenced by the magnetic susceptibility data. Above 70 K, the thermal conductivity drops sharply due to the structural change modifying phonon modes. Understanding these properties originated from the spin, and quantum effects are instrumental for designing high‐performance spin‐driven thermoelectrics.
more »
« less
Giant effect of spin–lattice coupling on the thermal transport in two-dimensional ferromagnetic CrI 3
High performance thermal management is of great significance to the data security and working stability of magnetic devices with broad applications from sensing to data storage and spintronics, where there would exist coupling between the spin and phonon (lattice vibrations). However, the knowledge of the spin effect on thermal transport is lacking. Here, we report that the thermal conductivity of monolayer CrI 3 is more than two orders of magnitude enhanced by the spin–lattice coupling. Fundamental understanding is achieved by analyzing the coupling among electronic, magnetic and phononic properties based on the orbital projected electronic structure and spin density. The bond angles and atomic positions are substantially changed due to the spin–lattice coupling, making the structure more stiff and more symmetric, and lead to the weaker phonon anharmonicity, and thus the enhanced thermal conductivity. This study uncovers the giant effect of spin–lattice coupling on the thermal transport, which would deepen our understanding on thermal transport and shed light on future research of thermal transport in magnetic materials.
more »
« less
- PAR ID:
- 10157812
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 8
- Issue:
- 10
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 3520 to 3526
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ferrimagnetic inverse spinel NiCo 2 O 4 has attracted extensive research interest for its versatile electrochemical properties, robust magnetic order, high conductivity, and fast spin dynamics, as well as its highly tunable nature due to the closely coupled charge, spin, orbital, lattice, and defect effects. Single-crystalline epitaxial thin films of NiCo 2 O 4 present a model system for elucidating the intrinsic physical properties and strong tunability, which are not viable in bulk single crystals. In this Perspective, we discuss the recent advances in epitaxial NiCo 2 O 4 thin films, focusing on understanding its unusual magnetic and transport properties in light of crystal structure and electronic structure. The perpendicular magnetic anisotropy in compressively strained NiCo 2 O 4 films is explained by considering the strong spin–lattice coupling, particularly on Co ions. The prominent effect of growth conditions reveals the complex interplay between the crystal structure, cation stoichiometry, valence state, and site occupancy. NiCo 2 O 4 thin films also exhibit various magnetotransport anomalies, including linear magnetoresistance and sign change in anomalous Hall effect, which illustrate the competing effects of band-intrinsic Berry phase and impurity scattering. The fundamental understanding of these phenomena will facilitate the functional design of NiCo 2 O 4 thin films for nanoscale spintronic applications.more » « less
-
null (Ed.)Understanding transport mechanisms of electrons and phonons, two major energy carriers in solids, are crucial for various engineering applications. It is widely believed that more free electrons in a material should correspond to a higher thermal conductivity; however, free electrons also scatter phonons to lower the lattice thermal conductivity. The net contribution of free electrons has been rarely studied because the effects of electron–phonon (e–ph) interactions on lattice thermal conductivity have not been well investigated. Here an experimental study of e–ph scattering in quasi-one-dimensional NbSe 3 nanowires is reported, taking advantage of the spontaneous free carrier concentration change during charge density wave (CDW) phase transition. Contrary to the common wisdom that more free electrons would lead to a higher thermal conductivity, results show that during the depinning process of the condensed electrons, while the released electrons enhance the electronic thermal conductivity, the overall thermal conductivity decreases due to the escalated e–ph scattering. This study discloses how competing effects of free electrons result in unexpected trends and provides solid experimental data to dissect the contribution of e–ph scattering on lattice thermal conductivity. Lastly, an active thermal switch design is demonstrated based on tuning electron concentration through electric field.more » « less
-
Two-dimensional layered transition metal dichalcogenides are potential thermoelectric candidates with application in on-chip integrated nanoscale cooling and power generation. Here, we report a comprehensive experimental and theoretical study on the in-plane thermoelectric transport properties of thin 2H-MoTe2 flakes prepared in field-effect transistor geometry to enable electrostatic gating and modulation of the electronic properties. The thermoelectric power factor is enhanced by up to 45% using electrostatic modulation. The in-plane thermal conductivity of 9.8 ± 3.7 W m−1 K−1 is measured using the heat diffusion imaging method in a 25 nm thick flake. First-principles calculations are used to obtain the electronic band structure, phonon band dispersion, and electron–phonon scattering rates. The experimental electronic properties are in agreement with theoretical results obtained within energy-dependent relaxation time approximation. The thermal conductivity is evaluated using both the relaxation time approximation and the full iterative solution to the phonon Boltzmann transport equation. This study establishes a framework to quantitively compare first-principle-based calculations with experiments in 2D layered materials.more » « less
-
null (Ed.)Thermal anisotropy/isotropy is one of the fundamental thermal transport properties of materials and plays a critical role in a wide range of practical applications. Manipulation of anisotropic to isotropic thermal transport or vice versa is in increasing demand. However, almost all the existing approaches for tuning anisotropy or isotropy focus on structure engineering or materials processing, which is time and cost consuming and irreversible, while little progress has been made with an intact, robust, and reversible method. Motivated by the inherent relationship between interatomic interaction mediated phonon transport and electronic charges, we comprehensively investigate the effect of external electric field on thermal transport in two-dimensional (2D) borophene by performing first-principles calculations along with the phonon Boltzmann transport equation. Under external electric field, the lattice thermal conductivity of borophene in both in-plane directions first increases significantly to peak values with the maximum augmentation factor of 2.82, and the intrinsic anisotropy (the ratio of thermal conductivity along two in-plane directions) is boosted to the highest value of 2.13. After that, thermal conductivities drop down steeply and anisotropy exhibits oscillating decay. With the electric field increasing to 0.4 V Å −1 , the thermal conductivity is dramatically suppressed to 1/40 of the original value at no electric field. More interestingly, the anisotropy of the thermal conductivity decreases to the minimum value of 1.25, showing almost isotropic thermal transport. Such abnormal anisotropic to isotropic thermal transport transition stems from the large enhancement and suppression of phonon lifetime at moderate and high strength of electric field, respectively, and acts as an amplifying or reducing factor to the thermal conductivity. We further explain the tunability of phonon lifetime of the dominant acoustic mode by an electron localization function. By comparing the electric field-modulated thermal conductivity of borophene with the dielectric constant, it is found that the screened potential resulting from the redistributed charge density leads to phonon renormalization and the modulation of phonon anharmonicity and anisotropy through electric field. Our study paves the way for robust tuning of anisotropy of phonon transport in materials by applying intact, robust, and reversible external electric field without altering their atomic structure and would have a significant impact on emerging applications, such as thermal management of nanoelectronics and thermoelectric energy conversion.more » « less
An official website of the United States government

