The inverse spinel ferrimagnetic NiCo2O4possesses high magnetic Curie temperature TC, high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo2O4thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo2O4films on MgAl2O4substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while TCfor 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity [Formula: see text] and its scaling relation with the longitudinal conductivity ([Formula: see text]) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo2O4.
more »
« less
Epitaxial NiCo 2 O 4 film as an emergent spintronic material: Magnetism and transport properties
The ferrimagnetic inverse spinel NiCo 2 O 4 has attracted extensive research interest for its versatile electrochemical properties, robust magnetic order, high conductivity, and fast spin dynamics, as well as its highly tunable nature due to the closely coupled charge, spin, orbital, lattice, and defect effects. Single-crystalline epitaxial thin films of NiCo 2 O 4 present a model system for elucidating the intrinsic physical properties and strong tunability, which are not viable in bulk single crystals. In this Perspective, we discuss the recent advances in epitaxial NiCo 2 O 4 thin films, focusing on understanding its unusual magnetic and transport properties in light of crystal structure and electronic structure. The perpendicular magnetic anisotropy in compressively strained NiCo 2 O 4 films is explained by considering the strong spin–lattice coupling, particularly on Co ions. The prominent effect of growth conditions reveals the complex interplay between the crystal structure, cation stoichiometry, valence state, and site occupancy. NiCo 2 O 4 thin films also exhibit various magnetotransport anomalies, including linear magnetoresistance and sign change in anomalous Hall effect, which illustrate the competing effects of band-intrinsic Berry phase and impurity scattering. The fundamental understanding of these phenomena will facilitate the functional design of NiCo 2 O 4 thin films for nanoscale spintronic applications.
more »
« less
- PAR ID:
- 10384106
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 132
- Issue:
- 2
- ISSN:
- 0021-8979
- Page Range / eLocation ID:
- 020901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The inverse spinel ferrimagnetic NiCo2O4presents a unique model system for studying the competing effects of crystalline fields, magnetic exchange, and various types of chemical and lattice disorder on the electronic and magnetic states. Here, magnetotransport anomalies in high‐quality epitaxial NiCo2O4thin films resulting from the complex energy landscape are reported. A strong out‐of‐plane magnetic anisotropy, linear magnetoresistance, and robust anomalous Hall effect above 300 K are observed in 5–30 unit cell NiCo2O4films. The anomalous Hall resistance exhibits a nonmonotonic temperature dependence that peaks around room temperature, and reverses its sign at low temperature in films thinner than 20 unit cells. The scaling relation between the anomalous Hall conductivity and longitudinal conductivity reveals the intricate interplay between the spin‐dependent impurity scattering, band intrinsic Berry phase effect, and electron correlation. This study provides important insights into the functional design of NiCo2O4for developing spinel‐based spintronic applications.more » « less
-
Abstract Understanding intrinsic exchange bias in nominally single‐component ferromagnetic or ferrimagnetic materials is crucial for simplifying related device architectures. However, the mechanisms behind this phenomenon and its tunability remain elusive, which hinders the efforts to achieve unidirectional magnetization for widespread applications. Inspired by the high tunability of ferrimagnetic inverse spinel NiCo2O4, the origin of intrinsic exchange bias in NiCo2O4(111) films deposited on Al2O3(0001) substrates are investigated. The comprehensive characterizations, including electron diffraction, X‐ray reflectometry and spectroscopy, and polarized neutron reflectometry, reveal that intrinsic exchange bias in NiCo2O4(111)/Al2O3(0001) arises from a reconstructed antiferromagnetic rock‐salt NixCo1‐xO layer at the interface between the film and the substrate due to a significant structural mismatch. Remarkably, by engineering the interfacial structure under optimal growth conditions, it can achieve exchange bias larger than coercivity, leading to unidirectional magnetization. Such giant intrinsic exchange bias can be utilized for realistic device applications. This work establishes a new material platform based on NiCo2O4, an emergent spintronics material, to study tunable interfacial magnetic and spintronic properties.more » « less
-
null (Ed.)Abstract The manipulation of antiferromagnetic order in magnetoelectric Cr 2 O 3 using electric field has been of great interest due to its potential in low-power electronics. The substantial leakage and low dielectric breakdown observed in twinned Cr 2 O 3 thin films, however, hinders its development in energy efficient spintronics. To compensate, large film thicknesses (250 nm or greater) have been employed at the expense of device scalability. Recently, epitaxial V 2 O 3 thin film electrodes have been used to eliminate twin boundaries and significantly reduce the leakage of 300 nm thick single crystal films. Here we report the electrical endurance and magnetic properties of thin (less than 100 nm) single crystal Cr 2 O 3 films on epitaxial V 2 O 3 buffered Al 2 O 3 (0001) single crystal substrates. The growth of Cr 2 O 3 on isostructural V 2 O 3 thin film electrodes helps eliminate the existence of twin domains in Cr 2 O 3 films, therefore significantly reducing leakage current and increasing dielectric breakdown. 60 nm thick Cr 2 O 3 films show bulk-like resistivity (~ 10 12 Ω cm) with a breakdown voltage in the range of 150–300 MV/m. Exchange bias measurements of 30 nm thick Cr 2 O 3 display a blocking temperature of ~ 285 K while room temperature optical second harmonic generation measurements possess the symmetry consistent with bulk magnetic order.more » « less
-
The ability to accommodate multiple principal cations within a single crystallographic structure makes high entropy oxides (HEOs) ideal systems for exploring new composition–property relationships. In this work, the high-entropy design strategy is extended to strained single-crystal HEO-manganite (HEO-Mn) thin films. Phase-pure orthorhombic films of (Gd0.2La0.2Nd0.2Sm0.2Sr0.2)MnO3 were deposited on three different single-crystal substrates: SrTiO3 (STO) (100), NdGaO3 (110), and LaAlO3 (LAO) (100), each inducing different degrees of epitaxial strain. Fully coherent growth of the thin films is observed in all cases, despite the high degree of lattice mismatch between HEO-Mn and LAO. Magnetometry measurements reveal distinct differences in the magnetic properties between epitaxially strained HEO-Mn thin films and their bulk crystalline HEO counterparts. In particular, the bulk polycrystalline HEO-Mn shows two magnetic transitions as opposed to a single one observed in epitaxial thin films. Moreover, the HEO-Mn film deposited on LAO exhibits a significant reduction in the Curie temperature, which is attributed to the strong variation of the in-plane lattice parameter along the thickness of the film and the resulting changes in the Mn–O–Mn bond geometry. Thus, this preliminary study demonstrates the potential of combining high entropy design with strain engineering to tailor the structure and functionality of perovskite manganites.more » « less
An official website of the United States government

