This literature review was conducted as a preliminary assessment of the available research literature produced by the engineering education community on climate affecting the retention of engineering doctoral students from diverse backgrounds. We seek to understand this specific student group’s retention in context of organizational science--specifically as an organizational climate issue--- and use an intersectional approach to consider the meaning and relevance of students’ belonging, simultaneously, to multiple social categories such as gender, sexual orientation, socioeconomic background, race/ethnicity, and disability status. We review the literature on engineering doctoral students produced by the engineering education community as a first step to building a climate survey instrument. The objective of this literature review is to explore how the concept of ‘climate’ is being used in context of doctoral engineering student retention to degree completion, and we gather a body of evidence of climate factors. To do this, we conducted a targeted literature review and used organizational climate and intersectionality as our approach to interpreting the literature, as we aim to understand how climate affects the retention of engineering doctoral students from diverse backgrounds. In this paper, we first briefly present our understanding of climate as grounded in organizational science and intersectional theory. We then explain our methodology and finally discuss our analysis of the doctoral engineering student literature in engineering.
more »
« less
A Review of the State of LGBTQIA+ Student Research in STEM and Engineering Education
The purpose of this critical literature review was to generate awareness of the LGBTQIA+ engineering student experience and research on this community, while also highlighting areas that are lacking or receiving insufficient attention. This work is part of a larger project that aims to review engineering education research with respect to LGBTQIA+ students, higher education faculty and staff, and industry professionals. This literature review was conducted in two phases. First, works from non-engineering disciplines were reviewed to identify popular threads and major areas of research on the LGBTQIA+ student experience. This phase was not an exhaustive review; rather, it was meant to establish specific themes of importance derived from the larger body of literature on the LGBTQIA+ student experience. Second, a literature review identified how engineering-specific research on the LGBTQIA+ student experience aligned with these themes. We identified several themes in the first phase of the literature review: (1) Climate, (2) LGB Monolith, (3) Intersectionality, and (4) Identity Development. Engineering and engineering education literature demonstrated similar themes, although this body of work was unique in the exploration of LGBTQIA+ coping strategies and the use of the technical/social dualism framework. Overall, the engineering education literature on LGBTQIA+ student experiences seemed relatively underdeveloped.
more »
« less
- Award ID(s):
- 1830730
- PAR ID:
- 10157897
- Date Published:
- Journal Name:
- ASEE annual conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Across various contexts, socialization processes and practices have been shown to play key roles in education and career outcomes, satisfaction, and trajectories. Numerous ways in which gender intersects with and structures socialization processes, practices, and experiences have also been identified. Graduate and post-graduate education in particular likely have their own socialization patterns which influence graduate student experience and outcomes. We are interested in the intersection of gender and socialization in graduate education. In this paper, we examine the research landscape of gendered socialization in a graduate engineering education context and identify potential areas for research growth. We also review the different ways in which socialization is theorized and approached in this field. This paper is organized in three parts. The first part broadly maps the landscape of gendered socialization in engineering education. In the second part of the paper, we systematically review the subset of articles on graduate and post-doctoral engineering education, focusing on their findings and approaches. Lastly, we offer recommendations to advance this field.more » « less
-
Many undergraduates use research internships to gain experience for graduate school. Science, technol- ogy, engineering, and mathematics (STEM) programs involve heavy research and lab work duties, for which students are often unprepared and lack opportunities for practice. Evidence supports Undergraduate Research Experience (URE) pro- grams’ ability to improve retention in STEM, but research has not conclu- sively identified what students need to do to excel in these programs. This analysis used a multimethod approach to identify and quantify student-to-student peer advice from six cohorts of a summer STEM URE. We identified six themes in the advice from exit surveys: proactively man- age time, communicate with your team, motivate yourself, be diligent, have fun, and accommodate changes in lifestyle. Each theme included between three and five subthemes that demonstrated nuance within the larger themes. Navigating the expectations of a URE is a complicated endeavor, but participants who are close to the experience provide rich descriptions to aid adjustment. Developing strategies for time management and team communication are most important, followed by motivation, work ethic, enjoyment, and practical adjustments.more » « less
-
The purpose of this work-in-progress research paper is to explore how mid-program engineering students perceive mastery-based assessment in a multidisciplinary, project-based engineering program. There have been calls in engineering education to support students beyond learning specific competencies but to also include curricular practices that help students see themselves as people who can do engineering. While it is understood that students’ mindsets and feelings of control over their own actions and outcomes are influential in how students see themselves as engineers, less is known about what specific classroom practices have this effect. Specifically, students experience assessment in relation to their learning throughout their engineering programs, but little is known about how their perceptions of these experiences impact their sense of agency or control over how and what they learn. This work explores how mastery-based learning and its associated assessment can be paired with a multidisciplinary project-based learning approach to influence students’ feelings of control and choice in their own engineering education. This paper focuses on qualitative findings from an initial pilot study for a larger, NSF-funded project at a small, Eastern private college. This exploratory pilot study includes the perceptions of four second-year engineering students enrolled in an undergraduate engineering program designed around integrated, multidisciplinary projects. A semi-structured interview with multiple open-ended questions was used to prompt participants to share their experiences with assessment in relation to their own learning, performance, confidence, and choices. Directed content and thematic analysis were used to identify codes and develop themes in relation to how participants described certain features of assessment in their engineering program. Preliminary results will illustrate students’ beliefs, learning, and perceptions of choice in relation to specific features of mastery-based assessment in a multidisciplinary project-based context. The initial themes and patterns identified in this preliminary pilot study will be used to set up a more focused secondary full data collection phase in the larger study and to initiate important conversation around the impacts of specific pedagogical choices on outcomes parallel to learning. By better understanding students’ perceptions of this pedagogical design, future classroom practices can be designed and oriented to support students in feeling agentic in their own engineering education and in becoming their version of an engineer.more » « less
-
null (Ed.)As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts.more » « less
An official website of the United States government

