Text entry is a common and important part of many intelligent user interfaces. However, inferring a user’s intended text from their input can be challenging: motor actions can be imprecise, input sensors can be noisy, and situations or disabilities can hamper a user’s perception of interface feedback. Numerous prior studies have explored input on touchscreen phones, smartwatches, in midair, and on desktop keyboards. Based on these prior studies, we are releasing a large and diverse data set of noisy typing input consisting of thousands of sentences written by hundreds of users on QWERTY-layout keyboards. This paper describes the various subsets contained in this new research dataset as well as the data format.
more »
« less
Mining, analyzing, and modeling text written on mobile devices
Abstract We present a method for mining the web for text entered on mobile devices. Using searching, crawling, and parsing techniques, we locate text that can be reliably identified as originating from 300 mobile devices. This includes 341,000 sentences written on iPhones alone. Our data enables a richer understanding of how users type “in the wild” on their mobile devices. We compare text and error characteristics of different device types, such as touchscreen phones, phones with physical keyboards, and tablet computers. Using our mined data, we train language models and evaluate these models on mobile test data. A mixture model trained on our mined data, Twitter, blog, and forum data predicts mobile text better than baseline models. Using phone and smartwatch typing data from 135 users, we demonstrate our models improve the recognition accuracy and word predictions of a state-of-the-art touchscreen virtual keyboard decoder. Finally, we make our language models and mined dataset available to other researchers.
more »
« less
- Award ID(s):
- 1750193
- PAR ID:
- 10157980
- Date Published:
- Journal Name:
- Natural Language Engineering
- ISSN:
- 1351-3249
- Page Range / eLocation ID:
- 1 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Typing every character in a text message may require more time or effort than strictly necessary. Skipping spaces or other characters may be able to speed input and also reduce a user's physical input effort. This can be particularly important for people with motor impairments. In a large crowdsourced study, we found workers frequently abbreviated text by omitting mid-word vowels. We designed a recognizer optimized for noisy input where users often omit spaces and mid-word vowels. We show using neural language models for selecting training text and rescoring sentences improved accuracy. On noisy touchscreen data collected from hundreds of users, we found accurate abbreviated input was possible even if a third of characters were omitted. Finally, in a study where users had to dwell for a second on each key, sentence abbreviated input was competitive with a conventional keyboard with word predictions. After practice, users wrote abbreviated sentences at 9.6 words-per-minute versus word input at 9.9 words-per-minute.more » « less
-
Today there is no effective support for device-wide question answer- ing on mobile devices. State-of-the-art QA models are deep learning behemoths designed for the cloud which run extremely slow and require more memory than available on phones. We present DeQA, a suite of latency- and memory- optimizations that adapts existing QA systems to run completely locally on mobile phones. Specifi- cally, we design two latency optimizations that (1) stops processing documents if further processing cannot improve answer quality, and (2) identifies computation that does not depend on the ques- tion and moves it offline. These optimizations do not depend on the QA model internals and can be applied to several existing QA models. DeQA also implements a set of memory optimizations by (i) loading partial indexes in memory, (ii) working with smaller units of data, and (iii) replacing in-memory lookups with a key-value database. We use DeQA to port three state-of-the-art QA systems to the mobile device and evaluate over three datasets. The first is a large scale SQuAD dataset defined over Wikipedia collection. We also create two on-device QA datasets, one over a publicly available email data collection and the other using a cross-app data collection we obtain from two users. Our evaluations show that DeQA can run QA models with only a few hundred MBs of memory and provides at least 13x speedup on average on the mobile phone across all three datasets.more » « less
-
Use of mobile phones today has become pervasive throughout society. A common use of a phone involves calling another person using VoIP apps. However the OSes on mobile devices are prone to compromise creating a risk for users who want to have private conversations when calling someone. Mobile devices today provide a hardware-protected mode called trusted execution environment (TEE) to protect users from a compromised OS. In this paper we propose a design to allow a user to make a secure end-to-end protected VoIP call from a compromised mobile phone. We implemented our design, TruzCall using Android OS and TrustZone TEE running OP-TEE OS. We built a prototype using the TrustZone-enabled Hikey development board and tested our design using the open source VoIP app Linphone. Our testing utilizes a simulation based environment that allows a Hikey board to use a real phone for audio hardware.more » « less
-
Smartphones are now a central technology in the daily lives of billions, but it relies on its battery to perform. Battery optimization is thereby a crucial design constraint in any mobile OS and device. However, even with new low-power methods, the ever-growing touchscreen remains the most power-hungry component. We propose an Ultra-Low-Power Mode (ULPM) for mobile devices that allows for touch interaction without visual feedback and exhibits significant power savings of up to 60% while allowing to complete interactive tasks. We demonstrate the effectiveness of the screenless ULPM in text-entry tasks, camera usage, and listening to videos, showing only a small decrease in usability for typical users.more » « less
An official website of the United States government

