skip to main content

Title: Leveraging Collaborative-Filtering for Personalized Behavior Modeling: A Case Study of Depression Detection among College Students
The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority more » voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future « less
Authors:
Award ID(s):
2009977
Publication Date:
NSF-PAR ID:
10287395
Journal Name:
ACM transactions on humanrobot interaction
ISSN:
2573-9522
Sponsoring Org:
National Science Foundation
More Like this
  1. Although combination antiretroviral therapy (ART) with three or more drugs is highly effective in suppressing viral load for people with HIV, many ART agents may exacerbate mental health-related adverse effects including depression. Therefore, understanding the effects of combination ART on mental health can help clinicians personalize medicine with less adverse effects to avoid undesirable health outcomes. The emergence of electronic health records offers researchers unprecedented access to HIV data including individuals' mental health records, drug prescriptions, and clinical information over time. However, modeling such data is challenging due to high-dimensionality of the drug combination space, the individual heterogeneity, and sparsenessmore »of the observed drug combinations. To address these challenges, we develop a Bayesian nonparametric approach to learn drug combination effect on mental health in people with HIV adjusting for socio-demographic, behavioral, and clinical factors. The proposed method is built upon the subset-tree kernel that represents drug combinations in a way that synthesizes known regimen structure into a single mathematical representation. It also utilizes a distance-dependent Chinese restaurant process to cluster heterogeneous populations while considering individuals' treatment histories. We evaluate the proposed approach through simulation studies, and apply the method to a dataset from the Women's Interagency HIV Study, showing the clinical utility of our model in guiding clinicians to prescribe informed and effective personalized treatment based on individuals' treatment histories and clinical characteristics.« less
  2. We built and compared several machine learning models to predict future self-reported wellbeing labels (of mood, health, and stress) for next day and for up to 7 days in the future, using multi-modal data. The data are from surveys, wearables, mobile phones and weather information collected in a study from college students, each providing daily data for 30 or 90 days. We compared the performance of multiple models, including personalized multi-task models and deep learning models. The best personalized multi-task linear model showed mean absolute errors of 12.8, 11.9, and 13.7 on a continuous-100 pt scale for estimating next daysmore »mood, health, and stress value, while the best multi-task neural network model, applied to 3-way high/med/low classification of the wellbeing values showed F1 scores of 0.71, 0.74, and 0.66 on mood, health, and stress metrics, respectively. We found that features related to weather, and morning academic activities are strongly associated with wellbeing labels. We further found greater prediction accuracy among participants with the least fluctuations in their wellbeing labels.« less
  3. Existing studies have demonstrated that using traditional machine learning techniques, phishing detection simply based on the features of URLs can be very effective. In this paper, we explore the deep learning approach and build four RNN (Recurrent Neural Network) models that only use lexical features of URLs for detecting phishing attacks. We collect 1.5 million URLs as the dataset and show that our RNN models can achieve a higher than 99% detection accuracy without the need of any expert knowledge to manually identify the features. However, it is well known that RNNs and other deep learning techniques are still largelymore »in black boxes. Understanding the internals of deep learning models is important and highly desirable to the improvement and proper application of the models. Therefore, in this work, we further develop several unique visualization techniques to intensively interpret how RNN models work internally in achieving the outstanding phishing detection performance. Especially, we identify and answer six important research questions, showing that our four RNN models (1) are complementary to each other and can be combined into an ensemble model with even better accuracy, (2) can well capture the relevant features that were manually extracted and used in the traditional machine learning approach for phishing detection, and (3) can help identify useful new features to enhance the accuracy of the traditional machine learning approach. Our techniques and experience in this work could be helpful for researchers to effectively apply deep learning techniques in addressing other real-world security or privacy problems.« less
  4. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describemore »our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9.« less
  5. Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target inmore »GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.« less