skip to main content


Title: RM-IoT: An IoT Based Rapid Medical Response Plan for Smart Cities
Most of the health monitoring applications for response plans are used to alert or notify the users in case of emergency situations. Response plans help in overcoming an emergency scenario in case of a disaster. On several occasions, the person of interest receives medical attention, once there is an on-set of the medical condition. With current smart healthcare facilities, where there are advantages of monitoring one's health on a daily basis, a person does not need to wait to be critically ill or meet with a disaster in order to receive necessary medical services. Leveraging the advantages of smart healthcare architectures in this research, we propose a smart rapid medical response plan, which monitors the physiological signs of people in a community and gives regular feedback or alerts the hospitals accordingly. The proposed framework provides feedback on different scales by ensuring the well-being of the individuals and alerting them to be cautious towards potential health issues. The routing of these sensor networks based on the emergency level is demonstrated using an open-source tool, CupCarbon. The proposed framework was simulated using the ZigBee radio standard and the overall simulation time for 40 nodes was 95 seconds.  more » « less
Award ID(s):
1924117 1924112
PAR ID:
10157983
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)
Page Range / eLocation ID:
241 to 246
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hospital systems play a critical role in treating injuries during disaster emergency responses. Simultaneously, natural disasters hinder their ability to operate at full capacity. Thus, cities must develop strategies that enable hospitals’ effective disaster operations. Here, we present a methodology to evaluate emergency response based on a model that assesses the loss of hospital functions and quantifies multiseverity injuries as a result of earthquake damage. The proposed methodology can design effective plans for patient transfers and allocation of ambulances and mobile operating rooms. This methodology is applied to Lima, Peru, subjected to a disaster scenario following a magnitude 8.0 earthquake. Our results show that the spatial distribution of healthcare demands mismatches the post-earthquake capacities of hospitals, leaving large zones on the periphery significantly underserved. This study demonstrates how plans that leverage hospital-system coordination can address this demand-capacity mismatch, reducing waiting times of critically injured patients by factors larger than two.

     
    more » « less
  2. Wearable devices are ubiquitous and Internet of Things (IoT) devices have made it possible by connecting real-time devices to virtual cloud. There are also a tremendous number of IoT-enabled consumer products for various healthcare applications. Mostly, IoT devices are used for health monitoring systems, though other business and service communities are customizing the IoT technology for greater opportunity and long-term benefit. Wearable health devices have been used for better health monitoring and exchanging more data with the physician to get the guidance of treatment or earlier diagnostic. Health monitoring in athletes is one of the multifaceted applications of wearable IoT devices whereas these devices collect and store data on their performance and progression. This technology can protect athletes by detecting any adverse health problem that occurs during the training period or at the time of the game. In this paper, we investigate the real-time monitoring of physiological parameters of the athlete during game time and performance analysis from the stored data. Continuous health monitoring during game time and off-days will reduce sports-related risks,stress and injuries of an athlete even sometimes it can save them from life-risk fatal accidents. This research integrates an IoT-based framework to develop a stress index for athletes that can be used as an indicator for monitoring athlete’s health. The proposed framework helps in monitoring the variability of the sensor information for the long-term analysis. 
    more » « less
  3. The paper addresses the important role of interorganizational coordination and network governance in implementing disaster response policies facing complex environments of emergencies and crises. The paper analyzes the National Response Framework (NRF) in the U.S. and its role in disaster response coordination. A network perspective is utilized to understand functional coordination based on the emergency support functions (ESFs), and to evaluate the role of the NRF in coordinating disaster response at the federal level. Based on the roles and coordination structures defined by the ESFs, interorganizational networks and affiliation networks are presented in the paper. In the context of the COVID-19 pandemic, this paper illustrates how the ESFs, especially ESF #7 - Logistics and ESF #8 - Public Health and Medical Services, operated in response to the crisis. 
    more » « less
  4. The Internet of Medical Things (IoMT) is a network of interconnected medical devices, wearables, and sensors integrated into healthcare systems. It enables real-time data collection and transmission using smart medical devices with trackers and sensors. IoMT offers various benefits to healthcare, including remote patient monitoring, improved precision, and personalized medicine, enhanced healthcare efficiency, cost savings, and advancements in telemedicine. However, with the increasing adoption of IoMT, securing sensitive medical data becomes crucial due to potential risks such as data privacy breaches, compromised health information integrity, and cybersecurity threats to patient information. It is necessary to consider existing security mechanisms and protocols and identify vulnerabilities. The main objectives of this paper aim to identify specific threats, analyze the effectiveness of security measures, and provide a solution to protect sensitive medical data. In this paper, we propose an innovative approach to enhance security management for sensitive medical data using blockchain technology and smart contracts within the IoMT ecosystem. The proposed system aims to provide a decentralized and tamper-resistant plat- form that ensures data integrity, confidentiality, and controlled access. By integrating blockchain into the IoMT infrastructure, healthcare organizations can significantly enhance the security and privacy of sensitive medical data. 
    more » « less
  5. Overindulgence of harmful substances such as drugs or alcohol, called substance abuse, can directly affect a person's health and their day-to-day activities. The younger population become more vulnerable to such use of psychoactive substances due to lack of awareness of the long-term hazardous effects these substances can have on their health. Additionally, these individuals tend to develop severe mental disorders as they grow older. With the boom of Internet of Things (IoT), the use of wearable sensors such as smartwatches and smartphones has tremendously increased. These wearables help in monitoring a person's physiological signal and keep them informed of one's health. In this research, we propose an edge-intelligent IoT-based wearable that can assist in substance-abuse detection by monitoring their physiological signals on daily basis. The proposed system helps in monitoring the substance abuse and craving of the individual and help the healthcare provider to start an early intervention as required. The proposed system is validated using a custom-built wearable, i-SAD, which was developed as a dedicated substance abuse wearable using commercially available off-the-shelf components. The proposed wearable design was validated using medical quality wearable and yielded a correlation of 0.89 for accelerometer values and 0.92 for average heart rate values. 
    more » « less