skip to main content


Title: i-lete: An IoT-based physical stress monitoring framework for athletes
Wearable devices are ubiquitous and Internet of Things (IoT) devices have made it possible by connecting real-time devices to virtual cloud. There are also a tremendous number of IoT-enabled consumer products for various healthcare applications. Mostly, IoT devices are used for health monitoring systems, though other business and service communities are customizing the IoT technology for greater opportunity and long-term benefit. Wearable health devices have been used for better health monitoring and exchanging more data with the physician to get the guidance of treatment or earlier diagnostic. Health monitoring in athletes is one of the multifaceted applications of wearable IoT devices whereas these devices collect and store data on their performance and progression. This technology can protect athletes by detecting any adverse health problem that occurs during the training period or at the time of the game. In this paper, we investigate the real-time monitoring of physiological parameters of the athlete during game time and performance analysis from the stored data. Continuous health monitoring during game time and off-days will reduce sports-related risks,stress and injuries of an athlete even sometimes it can save them from life-risk fatal accidents. This research integrates an IoT-based framework to develop a stress index for athletes that can be used as an indicator for monitoring athlete’s health. The proposed framework helps in monitoring the variability of the sensor information for the long-term analysis.  more » « less
Award ID(s):
1924117
NSF-PAR ID:
10351824
Author(s) / Creator(s):
;
Date Published:
Journal Name:
23rd International Symposium on Quality Electronic Design (ISQED)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wearables are a multi-billion-dollar business with more growth expected. Wearable technology is fully entrenched at multiple levels of athletic competition, especially at the National Collegiate Athletic Association (NCAA) and professional levels where these solutions are used to gain competitive advantages by assessing health and performance of elite athletes. However, through the National Science Foundation (NSF) Innovation Corps (I-Corps) training experience, a different story emerged based on pilot interviews from coaches and trainers regarding the lack of trust in wearables, and how the technology falls short of measuring what practitioners need. An NSF I-Corps project was funded to interview over 100 strength and conditioning coaches (S&CCs) and athletic trainers (ATs) regarding the current state of wearables at the NCAA and professional levels. Through 113 unstructured interviews, a conceptual map of relationships amongst themes and sub-themes regarding wearable technology emerged through the grouping of responses into meaning units (MUs). Interview findings revealed that discussions by S&CCs and ATs regarding wearables could be grouped into themes tied to (a) the organizational environment, (b) the athlete, and (c) the analyst or data scientist. Through this project, key findings and lessons learned were aggregated into sub-themes including: the sports ecosystem and organizational structure, brand development, recruiting, compliance and gamification of athletes, baselining movement and injury mitigation, internal and external loads, “return tos,” and quantifying performance. These findings can be used by practitioners to understand general technology practices and where to close the gap between what is available versus what is needed. 
    more » « less
  2. Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user’s body captured by a thermal camera can provide important information about the “fight-flight” response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of 0.8293 in binary stress classification, outperforming the thermal-only baseline approach by over 9%. Extensive evaluations highlight ThermaStrain’s effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach. These evaluations validate ThermaStrain’s fidelity and its potential for enhancing stress assessment. 
    more » « less
  3. Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user's body captured by a thermal camera can provide important information about the ``fight-flight'' response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of $0.8293$ in binary stress classification, outperforming the thermal-only baseline approach by over 9\%. Extensive evaluations highlight ThermaStrain's effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach. These evaluations validate ThermaStrain's fidelity and its potential for enhancing stress assessment. 
    more » « less
  4. null (Ed.)
    Pregnancy is a unique time when many mothers gain awareness of their lifestyle and its impacts on the fetus. High-quality care during pregnancy is needed to identify possible complications early and ensure the mother’s and her unborn baby’s health and well-being. Different studies have thus far proposed maternal health monitoring systems. However, they are designed for a specific health problem or are limited to questionnaires and short-term data collection methods. Moreover, the requirements and challenges have not been evaluated in long-term studies. Maternal health necessitates a comprehensive framework enabling continuous monitoring of pregnant women. In this paper, we present an Internet-of-Things (IoT)-based system to provide ubiquitous maternal health monitoring during pregnancy and postpartum. The system consists of various data collectors to track the mother’s condition, including stress, sleep, and physical activity. We carried out the full system implementation and conducted a real human subject study on pregnant women in Southwestern Finland. We then evaluated the system’s feasibility, energy efficiency, and data reliability. Our results show that the implemented system is feasible in terms of system usage during nine months. We also indicate the smartwatch, used in our study, has acceptable energy efficiency in long-term monitoring and is able to collect reliable photoplethysmography data. Finally, we discuss the integration of the presented system with the current healthcare system. 
    more » « less
  5. Abstract

    The increasing prevalence of wearable devices enables low-cost, long-term collection of health relevant data such as heart rate, exercise, and sleep signals. Currently these data are used to monitor short term changes with limited interpretation of their relevance to health. These data provide an untapped resource to monitor daily and long-term activity patterns. Changes and trends identified from such data can provide insights and guidance to the management of many chronic conditions that change over time. In this study we conducted a machine learning based analysis of longitudinal heart rate data collected over multiple years from Fitbit devices. We built a multi-resolutional pipeline for time series analysis, using model-free clustering methods inspired by statistical conformal prediction framework. With this method, we were able to detect health relevant events, their interesting patterns (e.g., daily routines, seasonal differences, and anomalies), and correlations to acute and chronic changes in health conditions. We present the results, lessons, and insights learned, and how to address the challenge of lack of labels. The study confirms the value of long-term heart rate data for health monitoring and surveillance, as complementary to extensive yet intermittent examinations by health care providers.

     
    more » « less