Abstract Iron‐nitrogen‐carbon (Fe‐N‐C) single‐atom catalysts are promising sustainable alternatives to the costly and scarce platinum (Pt) to catalyze the oxygen reduction reactions (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). However, Fe‐N‐C cathodes for PEMFC are made thicker than Pt/C ones, in order to compensate for the lower intrinsic ORR activity and site density of Fe‐N‐C materials. The thick electrodes are bound with mass transport issues that limit their performance at high current densities, especially in H2/air PEMFCs. Practical Fe‐N‐C electrodes must combine high intrinsic ORR activity, high site density, and fast mass transport. Herein, it has achieved an improved combination of these properties with a Fe‐N‐C catalyst prepared via a two‐step synthesis approach, constructing first a porous zinc‐nitrogen‐carbon (Zn‐N‐C) substrate, followed by transmetallating Zn by Fe via chemical vapor deposition. A cathode comprising this Fe‐N‐C catalyst has exhibited a maximum power density of 0.53 W cm−2in H2/air PEMFC at 80 °C. The improved power density is associated with the hierarchical porosity of the Zn‐N‐C substrate of this work, which is achieved by epitaxial growth of ZIF‐8 onto g‐C3N4, leading to a micro‐mesoporous substrate. 
                        more » 
                        « less   
                    
                            
                            Effects of bubbles on the electrochemical behavior of hydrogen-evolving Si microwire arrays oriented against gravity
                        
                    
    
            The size-distribution, coverage, electrochemical impedance, and mass-transport properties of H 2 gas-bubble films were measured for both planar and microwire-array platinized n + -Si cathodes performing the hydrogen-evolution reaction in 0.50 M H 2 SO 4 (aq). Inverted, planar n + -Si/Ti/Pt cathodes produced large, stationary bubbles which contributed to substantial increases in ohmic potential drops. In contrast, regardless of orientation, microwire array n + -Si/Ti/Pt cathodes exhibited a smaller layer of bubbles on the surface, and the formation of bubbles did not substantially increase the steady-state overpotential for H 2 (g) production. Experiments using an electroactive tracer species indicated that even when oriented against gravity, bubbles enhanced mass transport at the electrode surface. Microconvection due to growing and coalescing bubbles dominated effects due to macroconvection of gliding bubbles on Si microwire array cathodes. Electrodes that maintained a large number of small bubbles on the surface simultaneously exhibited low concentrations of dissolved hydrogen and small ohmic potential drops, thus exhibiting the lowest steady-state overpotentials. The results indicate that microstructured electrodes can operate acceptably for unassisted solar-driven water splitting in the absence of external convection and can function regardless of the orientation of the electrode with respect to the gravitational force vector. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1732096
- PAR ID:
- 10158089
- Date Published:
- Journal Name:
- Energy & Environmental Science
- ISSN:
- 1754-5692
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Gold screen printed electrodes (Au‐SPEs) were treated electrochemically to produce a micro‐rough pattern increasing the real electrode surface. The procedure based on the Dynamic Hydrogen Bubble Template (DHBT) method included electrochemical deposition of Au layers onto the surface of the Au‐SPEs, followed by a reductive process at −3 V (vs. Ag/AgCl) leading to formation of H2bubbles, which produced pores in the Au multilayer. The morphology of the micro‐porous Au electrode was characterized by scanning electron microscopy (SEM), surface mapping, surface profilometry, and confocal microscopy. The electrode surface morphology was controlled by the time of the electrode reductive treatment (H2evolution) and the optimized condition resulting in the best surface structuring was found. Notably, the surface roughness leading to the highest electrode surface area was significantly increased compared to previously reported results with Au‐SPEs.more » « less
- 
            null (Ed.)Current advancements in battery technologies require electrodes to combine high-performance active materials such as Silicon (Si) with two-dimensional materials such as transition metal carbides (MXenes) for prolonged cycle stability and enhanced electrochemical performance. More so, it is the interface between these materials, which is the nexus for their applicatory success. Herein, the interface strength variations between amorphous Si and Ti 3 C 2 T x MXenes are determined as the MXene surface functional groups ( T x ) are changed using first principles calculations. Si is interfaced with three Ti 3 C 2 MXene substrates having surface −OH, −OH and −O mixed, and −F functional groups. Density functional theory (DFT) results reveal that completely hydroxylated Ti 3 C 2 has the highest interface strength of 0.6 J m −2 with amorphous Si. This interface strength value drops as the proportion of surface −O and −F groups increases. Additional analysis of electron redistribution and charge separation across the interface is provided for a complete understanding of underlying physico-chemical factors affecting the surface chemistry and resultant interface strength values. The presented comprehensive analysis of the interface aims to develop sophisticated MXene based electrodes by their targeted surface engineering.more » « less
- 
            Abstract Slurries of semiconductor particles individually capable of unassisted light‐driven water‐splitting are modeled to have a promising path to low‐cost solar hydrogen generation, but they have had poor efficiencies. Tandem microparticle systems are a clear direction to pursue to increase efficiency. However, light absorption must be carefully managed in a tandem to prevent current mismatch in the subcells, which presents a possible challenge for tandem microwire particles suspended in a liquid. In this work, a Ni‐catalyzed Si/TiO2tandem microwire slurry is used as a stand‐in for an ideal bandgap combination to demonstrate proof‐of‐concept in situ alignment of unassisted water‐splitting microwires with an external magnetic field. The Ni hydrogen evolution catalyst is selectively photodeposited at the exposed Si microwire core to serve as the cathode site as well as a handle for magnetic orientation. The frequency distribution of the suspended microwire orientation angles is determined as a function of magnetic field strength under dispersion with and without uplifting microbubbles. After magnetizing the Ni bulb, tandem microwires can be highly aligned in water under a magnetic field despite active dispersion from bubbling or convection.more » « less
- 
            Encapsulation of an active electrocatalyst with a permeable overlayer is an attractive approach to simultaneously enhance its stability, activity, and selectivity. However, the structure–property relationships that govern the performance of encapsulated electrocatalysts are poorly understood, especially those describing the electrocatalytic behavior of the buried interface between the overlayer and active electrocatalyst. Using planar silicon oxide (SiO x )-encapsulated platinum (Pt)/titanium (Ti) bilayer thin films as model electrodes, the present study investigates the physical and electrochemical properties of the SiO x |Pt buried interface. Through a combination of X-ray photoelectron spectroscopy and electroanalytical measurements, it is revealed that a platinum oxide (PtO x ) interlayer can exist between the SiO x overlayer and Pt thin film. The thickness and properties of the PtO x interlayer can be altered by modifying (i) the thickness of the SiO x overlayer or (ii) the thickness of the Pt layer, which may expose the buried interface to oxophilic Ti. Importantly, SiO x |Pt electrodes based on ultrathin Pt/Ti bilayers possess thinner PtO x interlayers while exhibiting reduced permeabilities for Cu 2+ and H + and enhanced stability during cycling in 0.5 M H 2 SO 4 . These findings highlight the tunability of buried interfaces while providing new insights that are needed to guide the design of complex electrocatalysts that contain them.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    