skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure–property relationships describing the buried interface between silicon oxide overlayers and electrocatalytic platinum thin films
Encapsulation of an active electrocatalyst with a permeable overlayer is an attractive approach to simultaneously enhance its stability, activity, and selectivity. However, the structure–property relationships that govern the performance of encapsulated electrocatalysts are poorly understood, especially those describing the electrocatalytic behavior of the buried interface between the overlayer and active electrocatalyst. Using planar silicon oxide (SiO x )-encapsulated platinum (Pt)/titanium (Ti) bilayer thin films as model electrodes, the present study investigates the physical and electrochemical properties of the SiO x |Pt buried interface. Through a combination of X-ray photoelectron spectroscopy and electroanalytical measurements, it is revealed that a platinum oxide (PtO x ) interlayer can exist between the SiO x overlayer and Pt thin film. The thickness and properties of the PtO x interlayer can be altered by modifying (i) the thickness of the SiO x overlayer or (ii) the thickness of the Pt layer, which may expose the buried interface to oxophilic Ti. Importantly, SiO x |Pt electrodes based on ultrathin Pt/Ti bilayers possess thinner PtO x interlayers while exhibiting reduced permeabilities for Cu 2+ and H + and enhanced stability during cycling in 0.5 M H 2 SO 4 . These findings highlight the tunability of buried interfaces while providing new insights that are needed to guide the design of complex electrocatalysts that contain them.  more » « less
Award ID(s):
1752340
PAR ID:
10082423
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
44
ISSN:
2050-7488
Page Range / eLocation ID:
22287 to 22300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two-dimensional (2D) molybdenum disulfide (MoS 2 ) has been recognized as a potential substitution of platinum (Pt) for electrochemical hydrogen evolution reaction (HER). However, the broad adoption of MoS 2 is hindered by its limited number of active sites and low inherent electrical conductivity. In this work, we employed a one-step solvothermal synthesis technique to construct a ternary hybrid structure consisting of dual-phase MoS 2, titanium carbide (Ti 3 C 2 ) MXene, and carbon nanotubes (CNTs), and demonstrated synergistic effects for active site exposure, surface area enlargement, and electrical conductivity improvement of the catalyst. The dual-phase MoS 2 (DP-MoS 2 ) is directly formed on the MXene with CNTs acting as crosslinks between 2D islands. The existence of edge-enriched metallic phase MoS 2 , the conductive backbone of MXene along with the crosslink function of CNTs clearly improves the overall HER performance of the ternary nanocomposite. Moreover, the integration of MoS 2 with MXene not only increases the interlayer distance of the 2D layers but also partially suppresses the MXene oxidation and the 2D layer restacking, leading to good catalytic stability. As a result, an overpotential of 169 mV and a low Tafel slope of 51 mV/dec was successfully achieved. This work paves a way for 2D-based electrocatalyst engineering and sheds light on the development of the next-generation noble metal-free HER electrocatalysts. 
    more » « less
  2. Abstract Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications. 
    more » « less
  3. Abstract Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt 3 Ti and surface Pt 3 Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti 3 C 2 T x and Pt/Nb 2 CT x catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C–H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures. 
    more » « less
  4. In this work we investigate the effect of platinum loading and layer thickness on cathode catalyst degradation by a comprehensive in situ and STEM-EDS characterization. To decouple the effect of the platinum loading and layer thickness from each other, the experiments were categorized in two sets, each with cathode loadings varying between 0.1 and 0.4 mgPtcm−2: (i) Samples with a constant Pt/C ratio and thus varying layer thickness, and (ii) samples with varying Pt/C ratios, achieved by dilution with bare carbon, to maintain a constant layer thickness at different platinum loadings. Every MEA was subjected to an accelerated stress test, where the cell was operated for 45,000 cycles between 0.6 and 0.95 V. Regardless of the Pt/C ratio, a higher relative loss in electrochemically active surface area was measured for lower Pt loadings. STEM-EDS measurements showed that Pt was mainly lost close to the cathode—membrane interface by the concentration driven Pt2+ion flux into the membrane. The size of this Pt-depletion zone has shown to be independent on the overall Pt loading and layer thickness, hence causing higher relative Pt loss in low thickness electrodes, as the depletion zone accounts for a larger fraction of the catalyst layer. 
    more » « less
  5. Alkaline fuel cells enable the use of earth-abundant elements to replace Pt but are hindered by the sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline media. Precious metal–free HOR electrocatalysts need to overcome two major challenges: their low intrinsic activity from too strong a hydrogen-binding energy and poor durability due to rapid passivation from metal oxide formation. Here, we designed a Ni-based electrocatalyst with a 2-nm nitrogen-doped carbon shell (Ni@CN x ) that serves as a protection layer and significantly enhances HOR kinetics. A Ni@CN x anode, paired with a Co−Mn spinel cathode, exhibited a record peak power density of over 200 mW/cm 2 in a completely precious metal–free alkaline membrane fuel cell. Ni@CN x exhibited superior durability when compared to a Ni nanoparticle catalyst due to the enhanced oxidation resistance provided by the CN x layer. Density functional theory calculations suggest that graphitic carbon layers on the surface of the Ni nanoparticles lower the H binding energy to Ni, bringing it closer to the previously predicted value for optimal HOR activity, and single Ni atoms anchored to pyridinic or pyrrolic N defects of graphene can serve as the HOR active sites. The strategy described here marks a milestone in electrocatalyst design for low-cost hydrogen fuel cells and other energy technologies with completely precious metal–free electrocatalysts. 
    more » « less