The modeling of the brain as a three-dimensional spatial object, similar to a geographical landscape, has the paved way for the successful application of Kriging methods in solving the seizure detection problem with good performance but in cubic computational time complexity. The Deep Neural Network (DNN) has been widely used for seizure detection due to its effectiveness in classification tasks, although at the cost of a protracted training time. While Kriging exploits the spatial correlation between data locations, DNN relies on its capacity to learn intrinsic representations within the dataset from the basest unit parts. This paper presents a Distributed Kriging-Bootstrapped Deep Neural Network (DNN) model as a twofold solution for fast and accurate seizure detection using brain signals collected with the electroencephalogram (EEG) from healthy subjects and patients of epilepsy. The proposed model parallelizes the Kriging computation into different cores in a machine and then produces a strongly correlated, unified quasi-output data which serves as an input to the Deep Neural Network. Experimental results validate the proposed model as superior to conventional Kriging methods and DNN by training in 91% less time than the basic DNN and about three times as fast as the ordinary Kriging-Bootstrapped Deep Neural Network (DNN) model while maintaining good performance in terms of sensitivity, specificity and testing accuracy compared to other models and existing works.
more »
« less
Kriging-Bootstrapped DNN Hierarchical Model for Real-Time Seizure Detection from EEG Signals
The Deep Neural Network (DNN) model is known for its high accuracy in classification tasks due to its intrinsic ability to learn the underlying patterns existing in a set of data. Hence it has gained momentum in seizure detection research, as in many other fields. However, its high performance is at the expense of an extensive training time. This is not appropriate for a real-time application such as seizure detection in which a swift reaction is required to save the life of the patient. This paper presents a novel Kriging-Bootstrapped Deep Neural Network hierarchical model for early seizure detection in which Kriging is first used to generate a well-correlated intermediate data set from the original input. The correlated data is then fed into the DNN for the final training. Experiments were carried out using electroencephalogram (EEG) data from both normal and epileptic patients. Results show that, with the same architecture and data size, the cumulative training time of the Krigging-Bootstrapped DNN is about 75% lower than that of the ordinary DNN without a compromise in performance as the proposed hybrid model shows a slightly better accuracy than the baseline DNN model.
more »
« less
- Award ID(s):
- 1924112
- PAR ID:
- 10158120
- Date Published:
- Journal Name:
- Proceedings of the 6th IEEE World Forum on Internet of Things (WF-IoT)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Epileptic seizures are dangerous. They render patients unconscious and can lead to death within seconds of onset. There is, therefore, the need for a very fast and accurate seizure detection mechanism. Kriging methods have been used extensively in geostatistics for spatial prediction and are known for very high accuracy. By modeling the brain as a spatial map, we demonstrate the effectiveness of Kriging Methods for efficient seizure detection in an edge computing paradigm. We explore three different types of Kriging - Simple Kriging, Ordinary Kriging and Universal Kriging. Results from various experiments with electroencephalogram (EEG) signals of both healthy and diseased patients show that all three Kriging methods have good performance in terms of accuracy, sensitivity and detection latency. However, Simple Kriging emerged as the slight favorite for seizure detection with a mean detection latency of 0.81 sec, an accuracy of 97.50%, a sensitivity of 94.74% and a perfect specificity. Simple Kriging is at least 5% better than Ordinary Kriging and Universal Kriging when evaluated at 68.2% confidence interval. The results obtained in this paper compare favorably with other seizure detection models in the literature.more » « less
-
PurposeThe purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types without being trained on specific defect data sets and can be applied for real-time process control. Design/methodology/approachThis study develops an explainable artificial intelligence (AI) framework, a zero-bias deep neural network (DNN) model for real-time defect detection during the AM process. In this method, the last dense layer of the DNN is replaced by two consecutive parts, a regular dense layer denoted (L1) for dimensional reduction, and a similarity matching layer (L2) for equal weight and non-biased cosine similarity matching. Grayscale images of 3D printed samples acquired during printing were used as the input to the zero-bias DNN. FindingsThis study demonstrates that the approach is capable of successfully detecting multiple types of defects such as cracks, stringing and warping with high accuracy without any prior training on defective data sets, with an accuracy of 99.5%. Practical implicationsOnce the model is set up, the computational time for anomaly detection is lower than the speed of image acquisition indicating the potential for real-time process control. It can also be used to minimize manual processing in AI-enabled AM. Originality/valueTo the best of the authors’ knowledge, this is the first study to use zero-bias DNN, an explainable AI approach for defect detection in AM.more » « less
-
This paper presents a computational method, called Bootstrapped Koopman Direct Encoding (B-KDE) that allows us to approximate the Koopman operator with high accuracy by combining Koopman Direct Encoding (KDE) with a deep neural network. Deep learning has been applied to the Koopman operator method for finding an effective set of observable functions. Training the network, however, inevitably faces difficulties such as local minima, unless enormous computational efforts are made. Incorporating KDE can solve or alleviate this problem, producing an order of magnitude more accurate prediction. KDE converts the state transition function of a nonlinear system to a linear model in the lifted space of observables that are generated by deep learning. The combined KDE-deep model achieves higher accuracy than that of the deep learning alone. In B-KDE, the combined model is further trained until it reaches a plateau, and this computation is alternated between the neural network learning and the KDE computation. The result of the MSE loss implies that the neural network may get rid of local minima or at least find a smaller local minimum, and further improve the prediction accuracy. The KDE computation however, entails an effective algorithm for computing the inner products of observables and the nonlinear functions of the governing dynamics. Here, a computational method based on the Quasi-Monte Carlo integration is presented. The method is applied to a three-cable suspension robot, which exhibits complex switched nonlinear dynamics due to slack in each cable. The prediction accuracy is compared against its traditional counterparts.more » « less
-
Traditional network intrusion detection approaches encounter feasibility and sustainability issues to combat modern, sophisticated, and unpredictable security attacks. Deep neural networks (DNN) have been successfully applied for intrusion detection problems. The optimal use of DNN-based classifiers requires careful tuning of the hyper-parameters. Manually tuning the hyperparameters is tedious, time-consuming, and computationally expensive. Hence, there is a need for an automatic technique to find optimal hyperparameters for the best use of DNN in intrusion detection. This paper proposes a novel Bayesian optimization-based framework for the automatic optimization of hyperparameters, ensuring the best DNN architecture. We evaluated the performance of the proposed framework on NSL-KDD, a benchmark dataset for network intrusion detection. The experimental results show the framework’s effectiveness as the resultant DNN architecture demonstrates significantly higher intrusion detection performance than the random search optimization-based approach in terms of accuracy, precision, recall, and f1-score.more » « less
An official website of the United States government

