The Deep Neural Network (DNN) model is known for its high accuracy in classification tasks due to its intrinsic ability to learn the underlying patterns existing in a set of data. Hence it has gained momentum in seizure detection research, as in many other fields. However, its high performance is at the expense of an extensive training time. This is not appropriate for a real-time application such as seizure detection in which a swift reaction is required to save the life of the patient. This paper presents a novel Kriging-Bootstrapped Deep Neural Network hierarchical model for early seizure detection in which Kriging is first used to generate a well-correlated intermediate data set from the original input. The correlated data is then fed into the DNN for the final training. Experiments were carried out using electroencephalogram (EEG) data from both normal and epileptic patients. Results show that, with the same architecture and data size, the cumulative training time of the Krigging-Bootstrapped DNN is about 75% lower than that of the ordinary DNN without a compromise in performance as the proposed hybrid model shows a slightly better accuracy than the baseline DNN model.
more »
« less
Distributed Kriging-Bootstrapped DNN Model for Fast, Accurate Seizure Detection from EEG Signals
The modeling of the brain as a three-dimensional spatial object, similar to a geographical landscape, has the paved way for the successful application of Kriging methods in solving the seizure detection problem with good performance but in cubic computational time complexity. The Deep Neural Network (DNN) has been widely used for seizure detection due to its effectiveness in classification tasks, although at the cost of a protracted training time. While Kriging exploits the spatial correlation between data locations, DNN relies on its capacity to learn intrinsic representations within the dataset from the basest unit parts. This paper presents a Distributed Kriging-Bootstrapped Deep Neural Network (DNN) model as a twofold solution for fast and accurate seizure detection using brain signals collected with the electroencephalogram (EEG) from healthy subjects and patients of epilepsy. The proposed model parallelizes the Kriging computation into different cores in a machine and then produces a strongly correlated, unified quasi-output data which serves as an input to the Deep Neural Network. Experimental results validate the proposed model as superior to conventional Kriging methods and DNN by training in 91% less time than the basic DNN and about three times as fast as the ordinary Kriging-Bootstrapped Deep Neural Network (DNN) model while maintaining good performance in terms of sensitivity, specificity and testing accuracy compared to other models and existing works.
more »
« less
- Award ID(s):
- 1924112
- PAR ID:
- 10158121
- Date Published:
- Journal Name:
- Proceedings of the 19th IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Epileptic seizures are dangerous. They render patients unconscious and can lead to death within seconds of onset. There is, therefore, the need for a very fast and accurate seizure detection mechanism. Kriging methods have been used extensively in geostatistics for spatial prediction and are known for very high accuracy. By modeling the brain as a spatial map, we demonstrate the effectiveness of Kriging Methods for efficient seizure detection in an edge computing paradigm. We explore three different types of Kriging - Simple Kriging, Ordinary Kriging and Universal Kriging. Results from various experiments with electroencephalogram (EEG) signals of both healthy and diseased patients show that all three Kriging methods have good performance in terms of accuracy, sensitivity and detection latency. However, Simple Kriging emerged as the slight favorite for seizure detection with a mean detection latency of 0.81 sec, an accuracy of 97.50%, a sensitivity of 94.74% and a perfect specificity. Simple Kriging is at least 5% better than Ordinary Kriging and Universal Kriging when evaluated at 68.2% confidence interval. The results obtained in this paper compare favorably with other seizure detection models in the literature.more » « less
-
Existing deep learning systems commonly parallelize deep neural network (DNN) training using data or model parallelism, but these strategies often result in suboptimal parallelization performance. We introduce SOAP, a more comprehensive search space of parallelization strategies for DNNs that includes strategies to parallelize a DNN in the Sample, Operator, Attribute, and Parameter dimensions. We present FlexFlow, a deep learning engine that uses guided randomized search of the SOAP space to find a fast parallelization strategy for a specific parallel machine. To accelerate this search, FlexFlow introduces a novel execution simulator that can accurately predict a parallelization strategy’s performance and is three orders of magnitude faster than prior approaches that execute each strategy. We evaluate FlexFlow with six real-world DNN benchmarks on two GPU clusters and show that FlexFlow increases training throughput by up to 3.3× over state-of-the-art approaches, even when including its search time, and also improves scalability.more » « less
-
In the past decade, Deep Neural Networks (DNNs), e.g., Convolutional Neural Networks, achieved human-level performance in vision tasks such as object classification and detection. However, DNNs are known to be computationally expensive and thus hard to be deployed in real-time and edge applications. Many previous works have focused on DNN model compression to obtain smaller parameter sizes and consequently, less computational cost. Such methods, however, often introduce noticeable accuracy degradation. In this work, we optimize a state-of-the-art DNN-based video detection framework—Deep Feature Flow (DFF) from the cloud end using three proposed ideas. First, we propose Asynchronous DFF (ADFF) to asynchronously execute the neural networks. Second, we propose a Video-based Dynamic Scheduling (VDS) method that decides the detection frequency based on the magnitude of movement between video frames. Last, we propose Spatial Sparsity Inference, which only performs the inference on part of the video frame and thus reduces the computation cost. According to our experimental results, ADFF can reduce the bottleneck latency from 89 to 19 ms. VDS increases the detection accuracy by 0.6% mAP without increasing computation cost. And SSI further saves 0.2 ms with a 0.6% mAP degradation of detection accuracy.more » « less
-
Obeid, Iyad; Selesnick, Ivan; Picone, Joseph (Ed.)Scalp electroencephalograms (EEGs) are the primary means by which phy-sicians diagnose brain-related illnesses such as epilepsy and seizures. Au-tomated seizure detection using clinical EEGs is a very difficult machine learning problem due to the low fidelity of a scalp EEG signal. Neverthe-less, despite the poor signal quality, clinicians can reliably diagnose ill-nesses from visual inspection of the signal waveform. Commercially avail-able automated seizure detection systems, however, suffer from unaccepta-bly high false alarm rates. Deep learning algorithms that require large amounts of training data have not previously been effective on this task due to the lack of big data resources necessary for building such models and the complexity of the signals involved. The evolution of big data science, most notably the release of the Temple University EEG (TUEG) Corpus, has mo-tivated renewed interest in this problem. In this chapter, we discuss the application of a variety of deep learning ar-chitectures to automated seizure detection. Architectures explored include multilayer perceptrons, convolutional neural networks (CNNs), long short-term memory networks (LSTMs), gated recurrent units and residual neural networks. We use the TUEG Corpus, supplemented with data from Duke University, to evaluate the performance of these hybrid deep structures. Since TUEG contains a significant amount of unlabeled data, we also dis-cuss unsupervised pre-training methods used prior to training these com-plex recurrent networks. Exploiting spatial and temporal context is critical for accurate disambigua-tion of seizures from artifacts. We explore how effectively several conven-tional architectures are able to model context and introduce a hybrid system that integrates CNNs and LSTMs. The primary error modalities observed by this state-of-the-art system were false alarms generated during brief delta range slowing patterns such as intermittent rhythmic delta activity. A varie-ty of these types of events have been observed during inter-ictal and post-ictal stages. Training models on such events with diverse morphologies has the potential to significantly reduce the remaining false alarms. This is one reason we are continuing our efforts to annotate a larger portion of TUEG. Increasing the data set size significantly allows us to leverage more ad-vanced machine learning methodologies.more » « less
An official website of the United States government

