- Award ID(s):
- 1924112
- NSF-PAR ID:
- 10158167
- Date Published:
- Journal Name:
- Proceedings of the 2nd IFIP International Internet of Things (IoT) Conference (IFIP-IoT)
- Page Range / eLocation ID:
- 273-288
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Cameras are increasingly being deployed in cities, enterprises and roads world-wide to enable many applications in public safety, intelligent transportation, retail, healthcare and manufacturing. Often, after initial deployment of the cameras, the environmental conditions and the scenes around these cameras change, and our experiments show that these changes can adversely impact the accuracy of insights from video analytics. This is because the camera parameter settings, though optimal at deployment time, are not the best settings for good-quality video capture as the environmental conditions and scenes around a camera change during operation. Capturing poor-quality video adversely affects the accuracy of analytics. To mitigate the loss in accuracy of insights, we propose a novel, reinforcement-learning based system APT that dynamically, and remotely (over 5G networks), tunes the camera parameters, to ensure a high-quality video capture, which mitigates any loss in accuracy of video analytics. As a result, such tuning restores the accuracy of insights when environmental conditions or scene content change. APT uses reinforcement learning, with no-reference perceptual quality estimation as the reward function. We conducted extensive real-world experiments, where we simultaneously deployed two cameras side-by-side overlooking an enterprise parking lot (one camera only has manufacturer-suggested default setting, while the other camera is dynamically tuned by APT during operation). Our experiments demonstrated that due to dynamic tuning by APT, the analytics insights are consistently better at all times of the day: the accuracy of object detection video analytics application was improved on average by ∼ 42%. Since our reward function is independent of any analytics task, APT can be readily used for different video analytics tasks.more » « less
-
We present a first-of-its-kind ultra-compact intelligent camera system, dubbed i-FlatCam, including a lensless camera with a computational (Comp.) chip. It highlights (1) a predict-then-focus eye tracking pipeline for boosted efficiency without compromising the accuracy, (2) a unified compression scheme for single-chip processing and improved frame rate per second (FPS), and (3) dedicated intra-channel reuse design for depth-wise convolutional layers (DW-CONV) to increase utilization. i-FlatCam demonstrates the first eye tracking pipeline with a lensless camera and achieves 3.16 degrees of accuracy, 253 FPS, 91.49 µJ/Frame, and 6.7mm×8.9mm×1.2mm camera form factor, paving the way for next-generation Augmented Reality (AR) and Virtual Reality (VR) devices.more » « less
-
This paper presents a novel technique to achieve autofocusing for a three-dimensional (3D) profilometry system with dual projectors. The proposed system uses a camera that is attached with an electronically focus-tunable lens (ETL) that allows dynamic change of camera’s focal plane such that the camera can focus on the object; the camera captures fringe patterns projected by each projector to establish corresponding points between two projectors, and two pre-calibrated projectors form triangulation for 3D reconstruction. We pre-calibrate the relationship between the depth and the current being used for each focal plane, perform a 3D shape measurement with an unknown focus level, and calculate the desired current value based on the initial 3D result. We developed a prototype system that can automatically focus on an object positioned between 450 mm to 850 mm.
-
Algorithms for the estimation of gaze direction from mobile and video-based eye trackers typically involve tracking a feature of the eye that moves through the eye camera image in a way that covaries with the shifting gaze direction, such as the center or boundaries of the pupil. Tracking these features using traditional computer vision techniques can be difficult due to partial occlusion and environmental reflections. Although recent efforts to use machine learning (ML) for pupil tracking have demonstrated superior results when evaluated using standard measures of segmentation performance, little is known of how these networks may affect the quality of the final gaze estimate. This work provides an objective assessment of the impact of several contemporary ML-based methods for eye feature tracking when the subsequent gaze estimate is produced using either feature-based or model-based methods. Metrics include the accuracy and precision of the gaze estimate, as well as drop-out rate.more » « less
-
Active feedback control in magnetic confinement fusion devices is desirable to mitigate plasma instabilities and enable robust operation. Optical high-speed cameras provide a powerful, non-invasive diagnostic and can be suitable for these applications. In this study, we process high-speed camera data, at rates exceeding 100 kfps, on in situ field-programmable gate array (FPGA) hardware to track magnetohydrodynamic (MHD) mode evolution and generate control signals in real time. Our system utilizes a convolutional neural network (CNN) model, which predicts the n = 1 MHD mode amplitude and phase using camera images with better accuracy than other tested non-deep-learning-based methods. By implementing this model directly within the standard FPGA readout hardware of the high-speed camera diagnostic, our mode tracking system achieves a total trigger-to-output latency of 17.6 μs and a throughput of up to 120 kfps. This study at the High Beta Tokamak-Extended Pulse (HBT-EP) experiment demonstrates an FPGA-based high-speed camera data acquisition and processing system, enabling application in real-time machine-learning-based tokamak diagnostic and control as well as potential applications in other scientific domains.