Eye tracking has become an essential human-machine interaction modality for providing immersive experience in numerous virtual and augmented reality (VR/AR) applications desiring high throughput (e.g., 240 FPS), small-form, and enhanced visual privacy. However, existing eye tracking systems are still limited by their: (1) large form-factor largely due to the adopted bulky lens-based cameras; (2) high communication cost required between the camera and backend processor; and (3) potentially concerned low visual privacy, thus prohibiting their more extensive applications. To this end, we propose, develop, and validate a lensless FlatCambased eye tracking algorithm and accelerator co-design framework dubbed EyeCoD to enable eye tracking systems with a much reduced form-factor and boosted system efficiency without sacrificing the tracking accuracy, paving the way for next-generation eye tracking solutions. On the system level, we advocate the use of lensless FlatCams instead of lens-based cameras to facilitate the small form-factor need in mobile eye tracking systems, which also leaves rooms for a dedicated sensing-processor co-design to reduce the required camera-processor communication latency. On the algorithm level, EyeCoD integrates a predict-then-focus pipeline that first predicts the region-of-interest (ROI) via segmentation and then only focuses on the ROI parts to estimate gaze directions, greatly reducing redundant computations and data movements. On the hardware level, we further develop a dedicated accelerator that (1) integrates a novel workload orchestration between the aforementioned segmentation and gaze estimation models, (2) leverages intra-channel reuse opportunities for depth-wise layers, (3) utilizes input feature-wise partition to save activation memory size, and (4) develops a sequential-write-parallel-read input buffer to alleviate the bandwidth requirement for the activation global buffer. On-silicon measurement and extensive experiments validate that our EyeCoD consistently reduces both the communication and computation costs, leading to an overall system speedup of 10.95×, 3.21×, and 12.85× over general computing platforms including CPUs and GPUs, and a prior-art eye tracking processor called CIS-GEP, respectively, while maintaining the tracking accuracy. Codes are available at https://github.com/RICE-EIC/EyeCoD.
more »
« less
i-FlatCam: A 253 FPS, 91.49 µJ/Frame Ultra-Compact Intelligent Lensless Camera for Real-Time and Efficient Eye Tracking in VR/AR
We present a first-of-its-kind ultra-compact intelligent camera system, dubbed i-FlatCam, including a lensless camera with a computational (Comp.) chip. It highlights (1) a predict-then-focus eye tracking pipeline for boosted efficiency without compromising the accuracy, (2) a unified compression scheme for single-chip processing and improved frame rate per second (FPS), and (3) dedicated intra-channel reuse design for depth-wise convolutional layers (DW-CONV) to increase utilization. i-FlatCam demonstrates the first eye tracking pipeline with a lensless camera and achieves 3.16 degrees of accuracy, 253 FPS, 91.49 µJ/Frame, and 6.7mm×8.9mm×1.2mm camera form factor, paving the way for next-generation Augmented Reality (AR) and Virtual Reality (VR) devices.
more »
« less
- PAR ID:
- 10358521
- Date Published:
- Journal Name:
- 2022 Symposium on VLSI Technology & Circuits Digest of Technical Papers
- Page Range / eLocation ID:
- 108 to 109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vehicle flow estimation has many potential smart cities and transportation applications. Many cities have existing camera networks which broadcast image feeds; however, the resolution and frame-rate are too low for existing computer vision algorithms to accurately estimate flow. In this work, we present a computer vision and deep learning framework for vehicle tracking. We demonstrate a novel tracking pipeline which enables accurate flow estimates in a range of environments under low resolution and frame-rate constraints. We demonstrate that our system is able to track vehicles in New York City's traffic camera video feeds at 1 Hz or lower frame-rate, and produces higher traffic flow accuracy than popular open source tracking frameworks.more » « less
-
Eye motion tracking plays a vital role in many applications such as human-computer interaction (HCI), virtual reality, and disease detection. Camera-based eye tracking, albeit accurate and easy to use, may raise privacy concerns and appear to be unreliable in poor lighting conditions. In this paper, we present RadEye, a radar system capable of detecting fine-grained human eye motions from a distance. RadEye is realized through an integrated hardware and software design. It customizes a sub-6GHz FMCW radar so as to detect millimeter-level eye movement while extending its detection range using low frequency. It further employs a deep neural network (DNN) to refine the detection accuracy through camera-guided supervisory training. We have built a prototype of RadEye. Extensive experimental results show that it achieves 90% accuracy when detecting human eye rotation directions (up, down, left, and right) in various scenarios.more » « less
-
In this work, we tackle the problem of category-level online pose tracking of objects from point cloud sequences. For the first time, we propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances as well as per-part pose tracking for articulated objects from known categories. Here the 9DoF pose, comprising 6D pose and 3D size, is equivalent to a 3D amodal bounding box representation with free 6D pose. Given the depth point cloud at the current frame and the estimated pose from the last frame, our novel end-to-end pipeline learns to accurately update the pose. Our pipeline is composed of three modules: 1) a pose canonicalization module that normalizes the pose of the input depth point cloud; 2) RotationNet, a module that directly regresses small interframe delta rotations; and 3) CoordinateNet, a module that predicts the normalized coordinates and segmentation, enabling analytical computation of the 3D size and translation. Leveraging the small pose regime in the pose-canonicalized point clouds, our method integrates the best of both worlds by combining dense coordinate prediction and direct rotation regression, thus yielding an end-to-end differentiable pipeline optimized for 9DoF pose accuracy (without using non-differentiable RANSAC). Our extensive experiments demonstrate that our method achieves new state-of-the-art performance on category-level rigid object pose (NOCSREAL275 [29]) and articulated object pose benchmarks (SAPIEN [34], BMVC [18]) at the fastest FPS ∼ 12.more » « less
-
We design and prototype the first battery-free video streaming camera that harvests energy from both ambient light and RF signals. The RF signals are emitted by a nearby access point. The camera collects energy from both sources and backscatters up to 13 frames per second (fps) video at a distance of up to 150 ft in both outdoor and indoor environments. Compared to a single harvester powered by either ambient light or RF, our dual harvester design improves the camera's frame rate. Also, the dual harvester design maintains a steady 3 fps at distances beyond the RF energy harvesting range. To show efficacy of our battery-free video streaming camera for real applications such as surveillance and monitoring, we deploy our camera for a day-long experiment, from 8 AM to 4 PM, in an outdoor environment. Our results show that on a sunny day, our camera can provide a frame rate of up to 9 fps using a 4.5 cm×2.2 cm solar cell.more » « less
An official website of the United States government

