skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immunometabolic Links Underlying the Infectobesity with Persistent Viral Infections. J
Obesity and its related comorbidities are prevailing globally. Multiple factors are etiological to cause obesity and relevant metabolic disorders. In this regard, some pathogenic infections including those by viruses have also been associated with obesity (termed especiallky as infectobesity). In this mini-review, I examined recent publications about primary or cofactorial role of viral infections to exacerbate the local and systemic immunometabolic cues that underlie most cofactorial obesity. Major immuno-metabolic pathways involved, including that mediated by interferon (IFN) signaling and peroxisome proliferator activated receptor-γ (PPAR-γ), are discussed.  more » « less
Award ID(s):
1831988
PAR ID:
10158168
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of immunological sciences
Volume:
3
Issue:
4
ISSN:
2578-3009
Page Range / eLocation ID:
8-13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Infections are a major complication of obesity, but the mechanisms responsible for impaired defense against microbes are not well understood. Here, we found that adipocyte progenitors were lost from the dermis during diet-induced obesity (DIO) in humans and mice. The loss of adipogenic fibroblasts from mice resulted in less antimicrobial peptide production and greatly increased susceptibility to Staphylococcus aureus infection. The decrease in adipocyte progenitors in DIO mice was explained by expression of transforming growth factor–β (TGFβ) by mature adipocytes that then inhibited adipocyte progenitors and the production of cathelicidin in vitro. Administration of a TGFβ receptor inhibitor or a peroxisome proliferator–activated receptor–γ agonist reversed this inhibition in both cultured adipocyte progenitors and in mice and subsequently restored the capacity of obese mice to defend against S. aureus skin infection. Together, these results explain how obesity promotes dysfunction of the antimicrobial function of reactive dermal adipogenesis and identifies potential therapeutic targets to manage skin infection associated with obesity. 
    more » « less
  2. Obesity is now a prevalent disease worldwide and has a multi-factorial etiology. Several viruses or virus-like agents including members of adenoviridae, herpesviridae, slow virus (prion), and hepatitides, have been associated with obesity; meanwhile obese patients are shown to be more susceptible to viral infections such as during influenza and dengue epidemics. We examined the co-factorial role of viral infections, particularly of the persistent cases, in synergy with high-fat diet in induction of obesity. Antiviral interferons (IFNs), as key immune regulators against viral infections and in autoimmunity, emerge to be a pivotal player in the regulation of adipogenesis. In this review, we examine the recent evidence indicating that gut microbiota uphold intrinsic IFN signaling, which is extensively involved in the regulation of lipid metabolism. However, the prolonged IFN responses during persistent viral infections and obesogenesis comprise reciprocal causality between virus susceptibility and obesity. Furthermore, some IFN subtypes have shown therapeutic potency in their anti-inflammation and anti-obesity activity. 
    more » « less
  3. Metabolic syndrome (MetSyn) is a cluster of dysregulated metabolic conditions that occur together to increase the risk for cardiometabolic disorders such as type 2 diabetes (T2D). One key condition associated with MetSyn, abdominal obesity, is measured by computing the ratio of waist-to-hip circumference adjusted for the body-mass index (WHRadjBMI). WHRadjBMI and T2D are complex traits with genetic and environmental components, which has enabled genome-wide association studies (GWAS) to identify hundreds of loci associated with both. Statistical genetics analyses of these GWAS have predicted that WHRadjBMI is a strong causal risk factor of T2D and that these traits share genetic architecture at many loci. To date, no variants have been described that are simultaneously associated with protection from T2D but with increased abdominal obesity. Here, we used colocalization analysis to identify genetic variants with a shared association for T2D and abdominal obesity. This analysis revealed the presence of five loci associated with discordant effects on T2D and abdominal obesity. The alleles of the lead genetic variants in these loci that were protective against T2D were also associated with increased abdominal obesity. We further used publicly available expression, epigenomic, and genetic regulatory data to predict the effector genes (eGenes) and functional tissues at the 2p21, 5q21.1, and 19q13.11 loci. We also computed the correlation between the subcutaneous adipose tissue (SAT) expression of predicted effector genes (eGenes) with metabolic phenotypes and adipogenesis. We proposed a model to resolve the discordant effects at the 5q21.1 locus. We find that eGenes gypsy retrotransposon integrase 1 ( GIN1 ), diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2), and peptidylglycine alpha-amidating monooxygenase ( PAM ) represent the likely causal eGenes at the 5q21.1 locus. Taken together, these results are the first to describe a potential mechanism through which a genetic variant can confer increased abdominal obesity but protection from T2D risk. Understanding precisely how and which genetic variants confer increased risk for MetSyn will develop the basic science needed to design novel therapeutics for metabolic syndrome. 
    more » « less
  4. This paper presents sensor nanotechnologies that can be used for the skin-based gas “smelling” of disease. Skin testing may provide rapid and reliable results, using specific “fingerprints” or unique patterns for a variety of diseases and conditions. These can include metabolic diseases, such as diabetes and cholesterol-induced heart disease; neurological diseases, such as Alzheimer’s and Parkinson’s; quality of life conditions, such as obesity and sleep apnea; pulmonary diseases, such as cystic fibrosis, asthma, and chronic obstructive pulmonary disease; gastrointestinal tract diseases, such as irritable bowel syndrome and colitis; cancers, such as breast, lung, pancreatic, and colon cancers; infectious diseases, such as the flu and COVID-19; as well as diseases commonly found in ICU patients, such as urinary tract infections, pneumonia, and infections of the blood stream. Focusing on the most common gaseous biomarkers in breath and skin, which is nitric oxide and carbon monoxide, and certain abundant volatile organic compounds (acetone, isoprene, ammonia, alcohols, sulfides), it is argued here that effective discrimination between the diseases mentioned above is possible, by capturing the relative sensor output signals from the detection of each of these biomarkers and identifying the distinct breath print for each disease. 
    more » « less
  5. The pervasive presence of per- and polyfluoroalkyl substances (PFAS) in the environment and their persistent nature raise significant concerns regarding their impact on human health. This review delves into the obesogenic potential of PFAS, shedding light on their mechanisms of action, epidemiological correlations with obesity and metabolic disorders, and the challenges faced in regulatory frameworks. PFAS, characterized by their carbon-fluorine chains, are ubiquitous in various consumer products, leading to widespread exposure through ingestion of contaminated food and water. Emerging evidence suggests that PFAS may act as endocrine-disrupting chemicals, interfering with lipid metabolism and hormone functions related to obesity. We examine in vitro, in vivo, human, and in silico studies that explore the interaction of PFAS with PPARs and other molecular targets, influencing adipogenesis and lipid homeostasis. Furthermore, the review highlights epidemiological studies investigating the association between maternal PFAS exposure and the risk of obesity in offspring, presenting mixed and inconclusive findings that underscore the complexity of PFAS effects on human health. Presently, there are major challenges in studying PFAS toxicity, including their chemical diversity and the limitations of current regulatory guidelines, potential remediation, and detoxification. This review emphasizes the need for a multidisciplinary approach, combining advanced analytical methods, in silico models, and comprehensive epidemiological studies, to unravel the obesogenic effects of PFAS and inform effective public health strategies. 
    more » « less