skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiway clustering via tensor block models
We consider the problem of identifying multiway block structure from a large noisy tensor. Such problems arise frequently in applications such as genomics, recommendation system, topic modeling, and sensor network localization. We propose a tensor block model, develop a unified least-square estimation, and obtain the theoretical accuracy guarantees for multiway clustering. The statistical convergence of the estimator is established, and we show that the associated clustering procedure achieves partition consistency. A sparse regularization is further developed for identifying important blocks with elevated means. The proposal handles a broad range of data types, including binary, continuous, and hybrid observations. Through simulation and application to two real datasets, we demonstrate the outperformance of our approach over previous methods.  more » « less
Award ID(s):
1915978
PAR ID:
10158228
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 32 (NeurIPS)
Volume:
32
Page Range / eLocation ID:
715-725
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High-order clustering aims to identify heterogeneous substructures in multiway datasets that arise commonly in neuroimaging, genomics, social network studies, etc. The non-convex and discontinuous nature of this problem pose significant challenges in both statistics and computation. In this paper, we propose a tensor block model and the computationally efficient methods, high-order Lloyd algorithm (HLloyd), and high-order spectral clustering (HSC), for high-order clustering. The convergence guarantees and statistical optimality are established for the proposed procedure under a mild sub-Gaussian noise assumption. Under the Gaussian tensor block model, we completely characterise the statistical-computational trade-off for achieving high-order exact clustering based on three different signal-to-noise ratio regimes. The analysis relies on new techniques of high-order spectral perturbation analysis and a ‘singular-value-gap-free’ error bound in tensor estimation, which are substantially different from the matrix spectral analyses in the literature. Finally, we show the merits of the proposed procedures via extensive experiments on both synthetic and real datasets. 
    more » « less
  2. We consider the problem of multiway clustering in the presence of unknown degree​ ​heterogeneity. Such data problems arise commonly in applications such as recommendation systems, neuroimaging, community detection, and hypergraph partitions​ ​in social networks. The allowance of degree heterogeneity provides great flexibility​ ​in clustering models, but the extra complexity poses significant challenges in both​ ​statistics and computation. Here, we develop a degree-corrected tensor block model​ ​with estimation accuracy guarantees. We present the phase transition of clustering​ ​performance based on the notion of angle separability, and we characterize three​ ​signal-to-noise regimes corresponding to different statistical-computational behaviors.​ ​In particular, we demonstrate that an intrinsic statistical-to-computational gap emerges​ ​only for tensors of order three or greater.​ ​Further, we develop an efficient polynomial time algorithm that provably achieves exact​ ​clustering under mild signal conditions. The​ ​efficacy of our procedure is demonstrated​ ​through both simulations and analyses of​ ​Peru Legislation dataset. 
    more » « less
  3. We consider the problem of multiway clus- tering in the presence of unknown degree heterogeneity. Such data problems arise commonly in applications such as recom- mendation system, neuroimaging, commu- nity detection, and hypergraph partitions in social networks. The allowance of de- gree heterogeneity provides great flexibility in clustering models, but the extra com- plexity poses significant challenges in both statistics and computation. Here, we de- velop a degree-corrected tensor block model with estimation accuracy guarantees. We present the phase transition of clustering performance based on the notion of an- gle separability, and we characterize three signal-to-noise regimes corresponding to dif- ferent statistical-computational behaviors. In particular, we demonstrate that an intrin- sic statistical-to-computational gap emerges only for tensors of order three or greater. Further, we develop an efficient polynomial- time algorithm that provably achieves exact clustering under mild signal conditions. The efficacy of our procedure is demonstrated through both simulations and analyses of Peru Legislation dataset. 
    more » « less
  4. Abstract In the form of multidimensional arrays, tensor data have become increasingly prevalent in modern scientific studies and biomedical applications such as computational biology, brain imaging analysis, and process monitoring system. These data are intrinsically heterogeneous with complex dependencies and structure. Therefore, ad‐hoc dimension reduction methods on tensor data may lack statistical efficiency and can obscure essential findings. Model‐based clustering is a cornerstone of multivariate statistics and unsupervised learning; however, existing methods and algorithms are not designed for tensor‐variate samples. In this article, we propose a tensor envelope mixture model (TEMM) for simultaneous clustering and multiway dimension reduction of tensor data. TEMM incorporates tensor‐structure‐preserving dimension reduction into mixture modeling and drastically reduces the number of free parameters and estimative variability. An expectation‐maximization‐type algorithm is developed to obtain likelihood‐based estimators of the cluster means and covariances, which are jointly parameterized and constrained onto a series of lower dimensional subspaces known as the tensor envelopes. We demonstrate the encouraging empirical performance of the proposed method in extensive simulation studies and a real data application in comparison with existing vector and tensor clustering methods. 
    more » « less
  5. We consider the problem of structured tensor denoising in the presence of unknown permutations. Such data problems arise commonly in recommendation systems, neuroimaging, community detection, and multiway comparison applications. Here, we develop a general family of smooth tensor models up to arbitrary index permutations; the model incorporates the popular tensor block models and Lipschitz hypergraphon models as special cases. We show that a constrained least-squares estimator in the block-wise polynomial family achieves the minimax error bound. A phase transition phenomenon is revealed with respect to the smoothness threshold needed for optimal recovery. In particular, we find that a polynomial of degree up to (𝑚−2)⁢(𝑚+1)/2 is sufficient for accurate recovery of order-m tensors, whereas higher degrees exhibit no further benefits. This phenomenon reveals the intrinsic distinction for smooth tensor estimation problems with and without unknown permutations. Furthermore, we provide an efficient polynomial-time Borda count algorithm that provably achieves the optimal rate under monotonicity assumptions. The efficacy of our procedure is demonstrated through both simulations and Chicago crime data analysis. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work. 
    more » « less