skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting and studying high-energy collider neutrinos with FASER at the LHC: FASER Collaboration
More Like this
  1. Abstract FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASERν, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system and its commissioning using cosmic-rays collected in September 2021 and during the LHC pilot beam test carried out in October 2021. FASER has successfully started taking LHC collision data in 2022, and will run throughout LHC Run 3. 
    more » « less
  2. The Forward Search Experiment (FASER) at CERN’s Large Hadron Collider (LHC) has recently directly detected the first collider neutrinos. Neutrinos play an important role in all FASER analyses, either as signal or background, and it is therefore essential to understand the neutrino event rates. In this study, we update previous simulations and present prescriptions for theoretical predictions of neutrino fluxes and cross sections, together with their associated uncertainties. With these results, we discuss the potential for possible measurements that could be carried out in the coming years with the FASER neutrino data to be collected in LHC Run 3 and Run 4. Published by the American Physical Society2024 
    more » « less
  3. The LHC Run III will be a crucial run for the two LHC forward experiments: LHCf and FASER. In particular, Run III will be the last run where the LHCf detector can operate, and the first run of the new FASER project. The LHCf experiment is dedicated to precise measurements of forward production, necessary to tune hadronic interaction models employed in cosmic-ray physics. In Run III, the experiment will accomplish two fundamental goals: operating in p-p collisions at s√= s = 14 TeV, it will acquire a statistics that is ten times larger respect to Run II, in order to have precise measurements of π0 π 0 production; operating in high energy p-O and O-O collisions, it will measure forward production in a configuration that is very similar to the first interaction of an Ultra High Energy Cosmic Ray with an atmospheric nucleus. The FASER experiment is dedicated to the search of new weakly-interacting light particles thanks to a forward detector with proper shielding from Standard Model background. In Run III, it will be able to search for new particles with a good sensitivity, which can be strongly improved after an upgrade before Run IV. In addition, thanks to the dedicated FASERν detector, it will measure neutrino production at a collider for the first time. In this contribution, we discuss the main results expected from the LHCf and FASER experiments in Run III, highlighting their fundamental contribution in research fields that are not accessible to the four large LHC experiments. 
    more » « less
  4. The Forward Search Experiment (FASER) at CERN’s Large Hadron Collider (LHC) has recently directly detected the first collider neutrinos. Neutrinos play an important role in all FASER analyses, either as signal or background, and it is therefore essential to understand the neutrino event rates. In this study, we update previous simulations and present prescriptions for theoretical predictions of neutrino fluxes and cross sections, together with their associated uncertainties. With these results, we discuss the potential for possible measurements that could be carried out in the coming years with the FASER neutrino data to be collected in LHC Run 3 and Run 4. 
    more » « less