skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anion order in oxysulfide perovskites: origins and implications
Abstract Heteroanionic oxysulfide perovskite compounds represent an emerging class of new materials allowing for a wide range of tunability in the electronic structure that could lead to a diverse spectrum of novel and improved functionalities. Unlike cation ordered double perovskites—where the origins and design rules of various experimentally observed cation orderings are well known and understood—anion ordering in heteroanionic perovskites remains a largely uncharted territory. In this contribution, we present and discuss insights that have emerged from our first-principles-based electronic structure analysis of a prototypical anion-ordered SrHf(O0.5S0.5)3oxysulfide chemistry, studied in all possible anion configurations allowed within a finite size supercell. We demonstrate that the preferred anion ordering is always an all-cisarrangement of anions around an HfO3S3octahedron. As a general finding beyond the specific chemistry, the origins of this ordering tendency are traced back to a combined stabilization effect stemming from electronic, elastic, and electrostatic contributions. These qualitative notions are also quantified using state-of-the-art machine learning models. We further study the relative stability of the identified ordering as a function of A (Ca, Sr, Ba) and B (Ti, Zr, Hf) site chemistries and probe chemistry-dependent trends in the electronic structure and functionality of the material. Most remarkably, we find that the identified ground-state anion ordering breaks the inversion symmetry to create a family of oxysulfide ferroelectrics with a macroscopic polarization >30 μC/cm2, exhibiting a significant promise for electronic materials applications.  more » « less
Award ID(s):
1806147
PAR ID:
10158369
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
6
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Processing–structure relationships are at the heart of materials science, and predictive tools are essential for modern technological industries insofar as structure dictates intrinsic properties; however, few theoretical models exist for cation‐ordered perovskites. In this work, a combination of data mining and solid‐state synthesis was employed to collect structural data of 1:2 ordered (triple) perovskites. Three compositions within the (Ba1 − xSrx)(Mg1/3Ta2/3)O3system were synthesized using a conventional solid‐state mixed‐oxide method. X‐ray diffraction data showed evidence of long‐range 1:2 B‐site cation ordering for all compositions. Additional data for another 24 1:2 ordered compositions were mined from literature. Correlative models for the deviation in modified tolerance factor (Δt′) were derived for each system, and a general model which is capable of predicting the pseudocubic lattice constants of such perovskites based solely on published ionic‐radii data developed. 
    more » « less
  2. Abstract Rational design of chiral two‐dimensional hybrid organic–inorganic perovskites is crucial to achieve chiroptoelecronic, spintronic, and ferroelectric applications. Here, an efficient way to manipulate the chiroptoelectronic activity of 2D lead iodide perovskites is reported by forming mixed chiral (R‐ or S‐methylbenzylammonium (R‐MBA+or S‐MBA+)) and achiral (n‐butylammonium (nBA+)) cations in the organic layer. The strongest and flipped circular dichroism signals are observed in (R/S‐MBA0.5nBA0.5)2PbI4films compared to (R/S‐MBA)2PbI4. Moreover, the (R/S‐MBA0.5nBA0.5)2PbI4films exhibit pseudo‐symmetric, unchanged circularly polarized photoluminescence peak as temperature increases. First‐principles calculations reveal that mixed chiral–achiral cations enhance the asymmetric hydrogen‐bonding interaction between the organic and inorganic layers, causing more structural distortion, thus, larger spin‐polarized band‐splitting than pure chiral cations. Temperature‐dependent powder X‐ray diffraction and pair distribution function structure studies show the compressed intralayer lattice with enlarged interlayer spacing and increased local ordering. Overall, this work demonstrates a new method to tune chiral and chiroptoelectronic properties and reveals their atomic scale structural origins. 
    more » « less
  3. Abstract Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6and Y2CoRuO6polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6and Y2CoRuO6
    more » « less
  4. Abstract The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx(0 ≤x≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics. 
    more » « less
  5. Abstract Vacancy‐ordered double perovskites are attracting significant attention due to their chemical diversity and interesting optoelectronic properties. With a view to understanding both the optical and magnetic properties of these compounds, two series of RuIVhalides are presented;A2RuCl6andA2RuBr6, whereAis K, NH4, Rb or Cs. We show that the optical properties and spin‐orbit coupling (SOC) behavior can be tuned through changing theAcation and the halide. Within a series, the energy of the ligand‐to‐metal charge transfer increases as the unit cell expands with the largerAcation, and the band gaps are higher for the respective chlorides than for the bromides. The magnetic moments of the systems are temperature dependent due to a non‐magnetic ground state withJeff=0 caused by SOC. Ru‐Xcovalency, and consequently, the delocalization of metald‐electrons, result in systematic trends of the SOC constants due to variations in theAcation and the halide anion. 
    more » « less