In-memory computing (IMC) provides energy- efficient solutions to deep neural networks (DNN). Most IMC de- signs for DNNs employ fixed-point precisions. However, floating- point precision is still required for DNN training and complex inference models to maintain high accuracy. There have not been float-point precision based IMC works in the literature where the float-point computation is immersed into the weight memory storage. In this work, we propose a novel floating-point precision IMC macro with a configurable architecture that supports both normal 8-bit floating point (FP8) and 8-bit block floating point (BF8) with a shared exponent. The proposed FP-IMC macro implemented in 28nm CMOS demonstrates 12.1 TOPS/W for FP8 precision and 66.6 TOPS/W for BF8 precision, improving energy-efficiency beyond the state-of-the-art FP IMC macros.
more »
« less
Delta-DNN: Efficiently Compressing Deep Neural Networks via Exploiting Floats Similarity
Deep neural networks (DNNs) have gained considerable attention in various real-world applications due to the strong performance on representation learning. However, a DNN needs to be trained many epochs for pursuing a higher inference accuracy, which requires storing sequential versions of DNNs and releasing the updated versions to users. As a result, large amounts of storage and network resources are required, which significantly hamper DNN utilization on resource-constrained platforms (e.g., IoT, mobile phone). In this paper, we present a novel delta compression framework called Delta-DNN, which can efficiently compress the float-point numbers in DNNs by exploiting the floats similarity existing in DNNs during training. Specifically, (1) we observe the high similarity of float-point numbers between the neighboring versions of a neural network in training; (2) inspired by delta compression technique, we only record the delta (i.e., the differences) between two neighboring versions, instead of storing the full new version for DNNs; (3) we use the error-bounded lossy compression to compress the delta data for a high compression ratio, where the error bound is strictly assessed by an acceptable loss of DNNs’ inference accuracy; (4) we evaluate Delta-DNN’s performance on two scenarios, including reducing the transmission of releasing DNNs over network and saving the storage space occupied by multiple versions of DNNs. According to experimental results on six popular DNNs, DeltaDNN achieves the compression ratio 2x~10x higher than state-ofthe-art methods, while without sacrificing inference accuracy and changing the neural network structure.
more »
« less
- PAR ID:
- 10158379
- Date Published:
- Journal Name:
- The 49th International Conference on Parallel Processing (ICPP 2020)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning, which affects performance and throughput; 2) the increased training complexity; and 3) the lack of rigirous guarantee of compression ratio and inference accuracy. To overcome these limitations, this paper proposes CirCNN, a principled approach to represent weights and process neural networks using block-circulant matrices. CirCNN utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) from O(n2) to O(n log n) and the storage complexity from O(n2) to O(n), with negligible accuracy loss. Compared to other approaches, CirCNN is distinct due to its mathematical rigor: the DNNs based on CirCNN can converge to the same "effectiveness" as DNNs without compression. We propose the CirCNN architecture, a universal DNN inference engine that can be implemented in various hardware/software platforms with configurable network architecture (e.g., layer type, size, scales, etc.). In CirCNN architecture: 1) Due to the recursive property, FFT can be used as the key computing kernel, which ensures universal and small-footprint implementations. 2) The compressed but regular network structure avoids the pitfalls of the network pruning and facilitates high performance and throughput with highly pipelined and parallel design. To demonstrate the performance and energy efficiency, we test CirCNN in FPGA, ASIC and embedded processors. Our results show that CirCNN architecture achieves very high energy efficiency and performance with a small hardware footprint. Based on the FPGA implementation and ASIC synthesis results, CirCNN achieves 6 - 102X energy efficiency improvements compared with the best state-of-the-art results.more » « less
-
Deep learning that utilizes large-scale deep neural networks (DNNs) is effective in automatic high-level feature extraction but also computation and memory intensive. Constructing DNNs using block-circulant matrices can simultaneously achieve hardware acceleration and model compression while maintaining high accuracy. This paper proposes HSIM-DNN, an accurate hardware simulator on the C++ platform, to simulate the exact behavior of DNN hardware implementations and thereby facilitate the block-circulant matrix-based design of DNN training and inference procedures in hardware. Real FPGA implementations validate the simulator with various circulant block sizes and data bit lengths taking into account accuracy, compression ratio and power consumption, which provides excellent insights for hardware design.more » « less
-
Recent research on deep neural networks has focused primarily on improving accuracy. For a given accuracy level, it is typically possible to identify multiple DNN architectures that achieve that accuracy level. With equivalent accuracy, smaller DNN architectures offer at least three advantages: (1) Smaller DNNs require less communication across servers during distributed training. (2) Smaller DNNs require less bandwidth to export a new model from the cloud to an autonomous car. (3) Smaller DNNs are more feasible to deploy on FPGAs and other hardware with limited memory. To provide all of these advantages, we propose a small DNN architecture called SqueezeNet. SqueezeNet achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally, with model compression techniques we are able to compress SqueezeNet to less than 0.5MB (510x smaller than AlexNet).more » « less
-
null (Ed.)To deploy powerful deep neural network (DNN) into smart, but resource limited IoT devices, many prior works have been proposed to compress DNN to reduce the network size and computation complexity with negligible accuracy degradation, such as weight quantization, network pruning, convolution decomposition, etc. However, by utilizing conventional DNN compression methods, a smaller, but fixed, network is generated from a relative large background model to achieve resource limited hardware acceleration. However, such optimization lacks the ability to adjust its structure in real-time to adapt for a dynamic computing hardware resource allocation and workloads. In this paper, we mainly review our two prior works [13], [15] to tackle this challenge, discussing how to construct a dynamic DNN by means of either uniform or non-uniform sub-nets generation methods. Moreover, to generate multiple non-uniform sub-nets, [15] needs to fully retrain the background model for each sub-net individually, named as multi-path method. To reduce the training cost, in this work, we further propose a single-path sub-nets generation method that can sample multiple sub-nets in different epochs within one training round. The constructed dynamic DNN, consisting of multiple sub-nets, provides the ability to run-time trade-off the inference accuracy and latency according to hardware resources and environment requirements. In the end, we study the the dynamic DNNs with different sub-nets generation methods on both CIFAR-10 and ImageNet dataset. We also present the run-time tuning of accuracy and latency on both GPU and CPU.more » « less
An official website of the United States government

